Pytorch容器


1.torch.nn.Parameter()

  torch.nn.Parameter() 是 PyTorch 中的一个类,用于将张量包装成可训练的参数。
  在神经网络中,我们需要定义可训练的参数,例如模型的权重和偏置。torch.nn.Parameter() 允许我们将张量包装成一个特殊的参数对象,该对象会被注册为模型的一部分,并且可以自动进行梯度计算和更新。

import torch
import torch.nn as nn

# 定义一个线性模型类
class LinearModel(nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        # 创建一个可训练的参数
        self.weights = nn.Parameter(torch.randn(3, 2))
        self.bias = nn.Parameter(torch.zeros(3))

    def forward(self, x):
        # 使用参数进行线性变换
        return torch.matmul(x, self.weights) + self.bias

# 创建一个线性模型对象
model = LinearModel()

# 获取模型的参数
parameters = list(model.parameters())

print(parameters)
print("==============")
print(model.parameters)
[Parameter containing:
tensor([[-1.0570, -0.7752],
        [-1.1010,  0.0697],
        [ 1.3795,  0.5130]], requires_grad=True), Parameter containing:
tensor([0., 0., 0.], requires_grad=True)]
==============
<bound method Module.parameters of LinearModel()>

2.torch.nn.Module()

  torch.nn.Module() 是 PyTorch 中的一个基类,用于定义神经网络模型的基本结构。torch.nn.Module 是一个可扩展的类,用于构建神经网络模型。当我们定义自己的神经网络模型时,通常会继承 torch.nn.Module 类,并重写其中的方法,以定义模型的结构和前向传播逻辑。
代码如下(示例):

import torch
import torch.nn as nn

# 定义一个简单的全连接神经网络模型
class SimpleNet(nn.Module):
    def __init__(self)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值