离散数学笔记(二)

一、集合的相关概念:

  • 集合相等:
    1. A = B 当且仅当 ∀ x ( x ∈ A ↔ x ∈ B ) \forall x (x \in A \leftrightarrow x \in B) x(xAxB)
    2. A = B 当且仅当 A ⊆ B , 且 B ⊆ A A \subseteq B, 且 B \subseteq A AB,BA

  • 集合的基数/势:

    1)若集合S中恰有n个不同的元素,则称S为有限集合, n为S的基数/势,记作|S| = n;
    2)若集合S包含无限个不同的元素,则称S为无限集合,基数/势同样由|S|表示;
    3)势的比较:对于有限集合,若|A| = |B| = n, 则称A和B等势;对于无限集合,如果存在从集合A到B的双射,则称A和B 等势,记作 A ≈ B A \approx B AB;若 ∣ A ∣ ≤ ∣ B ∣ |A| \leq |B| AB,则称B优势于A ;
    4)康托尔-伯恩斯坦-施罗德定理:若 ∣ A ∣ ≤ ∣ B ∣ 且 ∣ A ∣ ≥ ∣ B ∣ , 则 ∣ A ∣ = ∣ B ∣ |A| \leq |B| 且 |A| \geq |B|, 则 |A| = |B| ABAB,A=B
    5)康托尔定理:任何集合的势劣势于其幂集(所谓幂集,即A的所有子集组成的集合(族))的势;


  • 可数集:

    一个集合称为可数的,当且仅当它与自然数集N的某个子集等势;
    1)若与N的某个有限子集等势,则可数集为有限集;
    2)若与N的某个无限子集等势,则同样与N等势,为可数无限集
    3)阿列夫数:康托尔引入 ℵ i ℵ_i i来表示一系列超穷基数,如 ℵ 0 ℵ_0 0为可数无限集的基数, ℵ 1 ℵ_1 1为所有可数序列集合的基数;常见的集合中, ∣ N ∣ = ∣ Z ∣ = ∣ Z + ∣ = ∣ Z − ∣ = ∣ Q ∣ = ℵ 0 |N| = |Z| = |Z_+| = |Z_-| = |Q| = ℵ_0 N=Z=Z+=Z=Q=0 ∣ R / Q ∣ = ∣ R ∣ = ℵ 1 |R/Q| = |R| = ℵ_1 R/Q=R=1
    4)连续统假设:不存在一个集合的势位于阿列夫0和阿列夫1之间;


  • 笛卡尔乘积/直积:

    AxB = { ( a , b ) ∣ a ∈ A ∧ b ∈ B (a,b) | a \in A \wedge b \in B (a,b)aAbB}
    (注意: 当A、B任意一个为空集时,其笛卡尔积为空集)



二、集合的运算:

  • 集合的常用运算符:

    ⋃ \bigcup ,交 ⋂ \bigcap , 补 A ‾ \overline A A,差 − - ,对称差 ⊕ \oplus

  • 集合恒等式:
名称等式
恒等律 A ⋃ ∅ = A A \bigcup \empty = A A=A
A ⋂ U = A A \bigcap U = A AU=A
支配律 A ⋃ U = U A \bigcup U = U AU=U
A ⋂ ∅ = ∅ A \bigcap \empty = \empty A=
幂等律 A ⋃ A = A A \bigcup A = A AA=A
A ⋂ A = A A \bigcap A = A AA=A
补集律~ (~A) = A
补律 A ⋃ A \bigcup A ~A = U U U
A ⋂ A \bigcap A ~A = ∅ \empty
交换律 A ⋃ B = B ⋃ A A \bigcup B = B \bigcup A AB=BA
A ⋂ B = B ⋂ A A \bigcap B = B \bigcap A AB=BA
结合律 A ⋃ ( B ⋃ C ) = ( A ⋃ B ) ⋃ C A \bigcup (B \bigcup C) = (A \bigcup B) \bigcup C A(BC)=(AB)C
A ⋂ ( B ⋂ C ) = ( A ⋂ B ) ⋂ C A \bigcap (B \bigcap C) = (A \bigcap B) \bigcap C A(BC)=(AB)C
分配律 A ⋃ ( B ⋂ C ) = ( A ⋃ B ) ⋂ ( A ⋃ C ) A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap (A \bigcup C) A(BC)=(AB)(AC)
A ⋂ ( B ⋃ C ) = ( A ⋂ B ) ⋃ ( A ⋂ C ) A \bigcap (B \bigcup C) = (A \bigcap B) \bigcup (A \bigcap C) A(BC)=(AB)(AC)
德摩根律~ ( A ⋃ B ) (A \bigcup B) (AB) = ~ A ⋂ A\bigcap A ~ B B B
~ ( A ⋂ B ) = (A \bigcap B) = (AB)= ~ A ⋃ A \bigcup A ~ B B B
吸收律 A ⋃ ( A ⋂ B ) = A A \bigcup (A \bigcap B) = A A(AB)=A
A ⋂ ( A ⋃ B ) = A A \bigcap (A \bigcup B) = A A(AB)=A


三、函数及其运算:

  • 函数/映射的相关概念:

    1)设A和B是非空的数集,从A到B的函数/映射f是对元素的一种指派,满足对A中的每个元素恰好指派B的一个元素,记作 f : A → B f: A \rightarrow B f:AB
    2)A是f的定义域;B是f的伴域/陪域
    3)若f为A中元素a指派的B中的元素为b,则可写作f(a) = b, 此时,称b是a的,a是b的一个原像
    4)A中所有元素的像构成的集合成为f的值域易知f的值域是其伴域的子集);
    5)若A和B是非空的有限集合,则用 B A B^A BA表示A到B的所有函数构成集合,该集合的势为 ∣ B ∣ ∣ A ∣ |B|^{|A|} BA
    6)并集的像: f ( X ⋃ Y ) = f ( X ) ⋃ f ( Y ) f(X \bigcup Y) = f(X) \bigcup f(Y) f(XY)=f(X)f(Y)
    交集的像: f ( X ⋂ Y ) ⊂ f ( X ) ⋂ f ( Y ) f(X \bigcap Y) \subset f(X) \bigcap f(Y) f(XY)f(X)f(Y)


  • 特殊函数:

    1)恒等函数:设A为非空集合,则A上的恒等函数 ι A : A → A \iota_A:A \rightarrow A ιA:AA定义为: ι A ( x ) = x , x ∈ A \iota_A(x) = x, x\in A ιA(x)=x,xA

    2)特征函数:设U为非空集合,对任意的A ⊆ \subseteq U,特征函数 χ A : U → { 0 , 1 } \chi_A: U \rightarrow \{0,1\} χA:U{0,1}定义为:
    χ A ( x ) = 1 , x ∈ A \chi_A(x) = 1, x\in A χA(x)=1,xA
    χ A ( x ) = 0 , x ∈ U − A \chi_A(x) = 0, x \in U-A χA(x)=0,xUA

    3)取整函数:函数y=[x]称为取整函数,也称高斯函数。其中不超过实数x的最大整数称为x的整数部分,记作[x]
    在这里插入图片描述


  • 单射/满射/双射:

    1) f : A → B f: A\rightarrow B f:AB是单射当且仅当: ∀ x 1 , x 2 ∈ A \forall x_1,x_2 \in A x1,x2A, 若 x 1 ≠ x 2 x_1 \neq x_2 x1=x2, 则: f ( x 1 ) ≠ f ( x 2 ) f(x_1) \neq f(x_2) f(x1)=f(x2)
    2) f : A → B f: A\rightarrow B f:AB是满射当且仅当: ∀ y ∈ B , ∃ x ∈ A \forall y \in B, \exist x \in A yB,xA 使得 f ( x ) = y f(x) = y f(x)=y
    3) f : A → B f: A\rightarrow B f:AB是满射当且仅当:f既是单射又是满射
    4)若A为有限非空集合,f是从A到A的函数,则f是单射当且仅当f是满射;
    5) f ⋅ g f \cdot g fg是满射,则f一定为满射; f ⋅ g f \cdot g fg 是单射,则g一定是单射;



四、自然数公理化:

  • 皮亚诺公理:

    1)零是自然数;
    2)每个自然数x都有一个自然数后继S(x);
    3)零不是任何自然数的后继;
    4)不同自然数有不同的后继;
    5)归纳公理:若某个自然数的子集包含零,且若该子集含有某个自然数,则一定也包含该自然数的后继,则该子集含有全部自然数;


  • 冯诺依曼归纳集定义:

    1)设a为一个集合,定义a的后继S(a): a ⋃ { a } a \bigcup \{ a \} a{a};
    2)设A为一个集合,若A满足:

    • ∅ ∈ A \empty \in A A
    • ∀ a , a ∈ A ⇒ S ( a ) ∈ A \forall a, a\in A \Rightarrow S(a) \in A a,aAS(a)A
      则称A是一个归纳集;
      3)自然数集合的归纳集定义:N是所有归纳集的交集,即N = { ∅ , { ∅ } , { ∅ , { ∅ } } , . . . \empty, \{\empty\}, \{\empty,\{\empty\}\},... ,{},{,{}},...};



  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值