pandas dataframe groupby 用法

一个经理的从业年限计算:以任职机构为切分,分开计算不同机构任职时期的业绩年限,最后汇总得到最后的年限(该方法的缺陷是历史记录中,如果存在在一家机构例如11年至12年管理产品,中间13年至15年未管理产品,16年又开始管理产品,此时会高估业绩年限)

goupby分别得出该经理在不同机构的最小任职期和最大离职期,然后求和即可。

def invest_period():
			def cal_by_org(t):
                t.dimission_date = t.dimission_date.max()
                t.tenure_date = t.tenure_date.min()
                t = t.drop_duplicates(['dimission_date'], keep='first')
                return t
			df = df.groupby('org_id').apply(lambda t: cal_by_org(t))
            df['diff'] = df["dimission_date"] - df["tenure_date"]
            invest_period = df['diff'].sum().days / 365
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

confined.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值