Title
题目
Real-time placental vessel segmentation in fetoscopic laser surgery for Twin-to-Twin Transfusion Syndrome
实时胎盘血管分割在胎儿镜激光手术中的应用——针对双胎输血综合征的研究
01
文献速递介绍
双胎输血综合征(TTTS)是一种虽不常见但严重的并发症,影响约10%至15%的单绒毛膜双胎妊娠(Lewi等,2008)。如果不及时治疗,因双胞胎之间血流失衡可能导致严重的并发症,甚至导致两名胎儿的死亡(Haverkamp等,2001)。这种情况是由于胎盘中存在异常的血管连接——动静脉瘘所引起的,这些连接将两名胎儿的血液循环连在一起。在正常的单绒毛膜双胎妊娠中,通常不存在这些瘘,但在TTTS中几乎总是存在。病理性血流失衡导致一个胎儿(“受者”)接受过多的血液,而另一个胎儿(“供者”)则接受的血液不足(Umur等,2002)。
Aastract
摘要
Twin-to-Twin Transfusion Syndrome (TTTS) is a rare condition that affects about 15% of monochorionicpregnancies, in which identical twins share a single placenta. Fetoscopic laser photocoagulation (FLP) is thestandard treatment for TTTS, which significantly improves the survival of fetuses. The aim of FLP is to identifyabnormal connections between blood vessels and to laser ablate them in order to equalize blood supply to bothfetuses. However, performing fetoscopic surgery is challenging due to limited visibility, a narrow field of view,and significant variability among patients and domains. In order to enhance the visualization of placentalvessels during surgery, we propose TTTSNet, a network architecture designed for real-time and accurateplacental vessel segmentation. Our network architecture incorporates a novel channel attention module andmulti-scale feature fusion module to precisely segment tiny placental vessels. To address the challenges posedby FLP-specific fiberscope and amniotic sac-based artifacts, we employed novel data augmentation techniques.These techniques simulate various artifacts, including laser pointer, amniotic sac particles, and structural andoptical fiber artifacts. By incorporating these simulated artifacts during training, our network architecturedemonstrated robust generalizability. We trained TTTSNet on a publicly available dataset of 2060 video framesfrom 18 independent fetoscopic procedures and evaluated it on a multi-center external dataset of 24 in-vivoprocedures with a total of 2348 video frames. Our method achieved significant performance improvementscompared to state-of-the-art methods, with a mean Intersection over Union of 78.26% for all placental vesselsand 73.35% for a subset of tiny placental vessels. Moreover, our method achieved 172 and 152 frames persecond on an A100 GPU, and Clara AGX, respectively. This potentially opens the door to real-time applicationduring surgical procedures.
双胎输血综合征(TTTS)是一种罕见的疾病,影响大约15%的单绒毛膜妊娠病例,其中同卵双胞胎共享一个胎盘。胎儿镜激光光凝术(FLP)是TTTS的标准治疗方法,显著提高了胎儿的存活率。FLP的目标是识别异常的血管连接并通过激光消融这些连接,以平衡两个胎儿的血液供应。然而,执行胎儿镜手术具有挑战性,因为可视性有限、视野狭窄,并且患者之间和操作领域的差异性很大。为了在手术过程中增强胎盘血管的可视化,我们提出了TTTSNet,一种专为实时、精确胎盘血管分割设计的网络架构。我们的网络架构结合了一个新的通道注意力模块和多尺度特征融合模块,能够精确分割细小的胎盘血管。为了应对FLP特有的光纤镜和羊膜囊导致的伪影挑战,我们采用了新颖的数据增强技术,这些技术模拟了各种伪影,包括激光指示器、羊膜囊颗粒以及结构和光纤伪影。通过在训练过程中引入这些模拟的伪影,我们的网络架构展示了强大的泛化能力。我们在一个公开的包含18次独立胎儿镜手术的2060帧视频数据集上训练了TTTSNet,并在一个多中心外部数据集上对24次体内手术共2348帧视频进行了评估。与最新的先进方法相比,我们的方法在所有胎盘血管的平均交并比(IoU)达到78.26%,在细小胎盘血管子集上的交并比为73.35%。此外,我们的方法在A100 GPU和Clara AGX上分别达到了每秒172帧和152帧的处理速度,这有可能为手术过程中的实时应用开辟了新的可能性。
Method
方法
This section presents our network architecture, TTTSNet, for realtime placental vessel segmentation for TTTS surgery. Our approach includes an asymmetric encoder–decoder neural network, feature fusionmodule, and channel-attention mechanism. Additionally, we introducenovel data augmentation approaches to increase the robustness andgeneralizability of the trained model against artifacts.
本节介绍了我们用于TTTS手术实时胎盘血管分割的网络架构TTTSNet。我们的方法包括非对称编码器-解码器神经网络、特征融合模块和通道注意力机制。此外,我们还引入了新颖的数据增强方法,以提高训练模型对伪影的鲁棒性和泛化能力。
Conclusion
结论
We have proposed a network architecture for real-time placental vessel segmentation in videos obtained during FLP for TTTS. Toimprove performance, we have developed custom network and dataaugmentations specifically tailored for this task. Our experiments ona large and diverse test set have shown that TTTSNet is not onlyaccurate in terms of segmentation metric but also robust in terms ofgeneralizability to datasets from different institutions. Furthermore, ourmethod demonstrates superior perfor