机器学习 扬帆起航002-02模型评估与选择(2)

笔记有什么问题,欢迎大佬指教呐

02模型评估与选择

2.2 模型选择
在这里插入图片描述

2.1.1 评估方法
首先什么是评估方法,你可以简单理解为我的模型建好了,用什么数据去评估它。理论来说应该是用未来的数据去评估,但是实际我们是没有未来数据的,那么我们就要从总数据中拿出一部分来当做‘未来数据’,那么测试集要怎么划分出来呢?便有了以下三种方法:(‘未来数据’我们将它叫做‘测试集’)

①留出法
比如我们有1万条样本数据,我们按照一个比例,分出一部分来当测试集,测试集在模型训练时不要使用,只用来评估模型。

这个方法很简单,但有一些小地方需要注意:第一,测试集划分我们用的比例不能太大,一般要求在1/5至1/3即可;第二,数据分布的一致性,简单来说就是你有1000男女数据,你测试集只用300个,比例没有问题,但是他们都是男,或者300里面只有50多个男,其他都是女,那也测试的不好,对吧!

②交叉验证
全名一般叫做‘n次k折交叉验证’,怎么弄呢,比如有1000数据,以5折交叉验证为例,将1000样本随机分为5份,取第一份作为测试集,训练测试一次;以第二份为测试集,训练测试一次…这样5次之后测试结果误差之类的取5次的均值。因为第一次的5份为随机的,我们可以取n次,不断地训练测试。

在这里插入图片描述
Ps:留一法:如果1000样本划分为1000份,每次留一个测试,这样训练测试1000次,这就是留一法,这个方法虽然效果好,但是很明显,计算开销太大,所以很少用。

③自助法(当时看到这个后,感觉太强了,用的很巧妙)
来复习下极限,有这样一个公式
在这里插入图片描述
这个结果可以去自己验证,下面来看自助法,比如m个样本,我每次从中取出一个,然后放回。每一个被取到的概率为1/m,那么不被取到的概率就是1-1/m,如果不断地这样做,也就是m无限大时会怎样呢,看上面那个极限公式,可以发现不管你取多少次,总会有36.8%的样本不会被取到,很神奇吧。
根据这个便有了自助法。

当然这三个方法也不是可以随便用的,自助法是我认为最好用的,但是他只适合与小数据集(又一次验证了NFL),留出法和交叉验证适合大数据集,最终这三个方法,最常用的是交叉验证。

2.2.2 性能度量
①错误率与精度
在这里插入图片描述

这是最常见的指标,就不说啥了。

②查准率和查全率和F1
这个指标什么时候可以用呢,具体值能说明什么呢?
举一个例子,如果我们有1000幅画,里面有5个赝品,现在要分出赝品,那么如果从画的持有者方面来考虑,将95幅真画里分错一个和5幅赝品分错一个其最后的价值是不同的(这个例子虽然有点不太合适,能理解这个数据集不平衡的特征就行)对于这些问题,就引出了查准率和查全率。(在分类中一定要将两类中数量少的那一类划为正类,这样评价才能体现稀有类的价值)

具体指标怎么求,在另一篇,这里是通道:通道

这里补充一下F1指标的新知识:
在这里插入图片描述
当β=1时,为正常的F1
当β>1时,偏重查全率
当β<1时,偏重查准率

③ROC曲线
参考上面的通道吧,就不再重写一遍了。

2.2.3 代价敏感错误率与代价曲线

以二分类为例,比如买票进入一个博物馆的人有好人有坏人,现在根据每个人的信息去分类,有四种情况①好人分成了好人②好人分成了坏人③坏人分成了好人④坏人分成了坏人。在①④中不会造成博物馆的损失,所以损失代价为0,而②和④都会造成一定的损失,假设分别为cost01和cost10,好人当成坏人,博物馆损失的只是一张票,而坏人当成好人,博物馆会损失很多钱,甚至金钱都无法弥补的损失。也就是说有时候cost01不等于cost10,那么我们用普通的错误率去评价就不怎么准确了。

在这里插入图片描述
新的错误率
代价敏感错误率(非均等代价下):
在这里插入图片描述
定义:0类中预测错误的个数代价cost+1类中预测错误的个数代价cost,然后除以总个数m。(每个类对应的cost相加一定为1)

非均等代价代价下,ROC指标也失去了意义,采用新的代价曲线来达到ROC指标的意义,
X轴(取值0-1):正例概率代价:
在这里插入图片描述
Ps:P为样例为正例的概率。
Y轴(取值0-1):归一化代价:
在这里插入图片描述
在这里插入图片描述

图中阴影构成期望总体代价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值