《聚类个人理解》介绍篇01——评价指标(上)page02

本篇介绍常用的评价指标,并介绍其原理,加上一些自己的理解。

介绍篇——评价指标

最新更改:2020-6-22

评价指标用来评价一个学习器的好坏。

评价模型我们始终要明白一个道理NFL:没有免费的午餐!

学习器的评价不是绝对的,它取决于你使用的数据特点,需求,算法等各种方面。

回归任务常用的评价指标是均方误差
假设:实际结果为Y,预测结果为Y’,样本集个数n,那么:

本文主要介绍分类任务的评价指标:

=>正式开始前认识四个值,通过这四个值,可以求得一部分指标。

实际结果正例(预测)反例(预测)
正例TPFN
反例FPTN

1、精度+错误率

① 精度(Accuracy,又称正确率):分类正确的样本占全部样本的比例
=>定义:(TP+TN)/(TP+FN+FP+TN)

②错误率 :分类错误的样本占全部样本的比例
=>定义:(FN+FP)/(TP+FN+FP+TN)

2、查准率+查全率+F1

① 查准率(Precision,又称准确率):预测是正例的样本中,的确是正例的比例
=>定义:(TP)/(TP+FP)

②查全率(Recall,又称召回率):正例的样本中,被预测为正例的比例
=>定义:(TP)/(TP+FN)

③F1

如上图为P-R(Pre-Rec)图,如果两个学习器的曲线没有相交,那么谁与xy轴组成的面积更大,谁的性能更好;那么如果相交了呢?这是如果用面积表示的话会产生一些异论,于是BEP(平衡点)被提出来解决这个问题,常用的度量就是F1值:

PS:因为Pre与Rec表示不同,在一些需求条件下会用二者一个比较更好而不是两个值一起比较。Pre与Rec与F1在计算原理时,对于混淆矩阵的处理不同,他们有又有分别对应的宏值与微值。

3、ROC+AUC

根据学习器的预测结果对样例进行排序,最有可能为正样本的在前,最不可能的在后,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值,分别以它们为横、纵坐标作图’就得到了 ROC 曲线(类比P-R图)

曲线为ROC曲线,曲线下的阴影面积为AUC
PS:曲线为ROC曲线,曲线下的阴影面积为AUC。

真正例率(TPR)与假正例率(FPR):

学习器的比较时,与P-R 图相似,一个学习器的 ROC 曲线被另一个学习器的曲线完全"包住", 则后者的性能优于前者;若两个学习ROC 曲线发生交叉,则难以比较,此时如果一定要进行比较 则较为合理的判据是 比较 ROC 线下 的面积,即比较AUC。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值