AI技术与物理世界深度融合:智谱GLM-PC震撼亮相,颠覆AI互动方式

🚀 AI技术与物理世界深度融合:智谱GLM-PC震撼亮相,颠覆AI互动方式

大家好! 今天给大家带来一项超级震撼的技术分享,智谱GLM-PC正是AI技术的一次重大突破,它标志着AI从传统的语言理解走向了与物理世界的深度互动!🎉 你没听错,AI不仅可以理解语言,它现在能够直接操作现实世界!🤖 这款产品带来的不仅是技术上的创新,更是未来智能生活的新篇章。💡

在本文中,我们将深入探讨智谱GLM-PC如何通过智能操作改变我们与物理世界的互动方式,打开AI操作物理世界的新大门。你将看到AI如何从语言理解跨越到实际操作,为我们的生活带来前所未有的便利和智能化体验!🌟


作者简介

猫头虎是谁?

大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都具备丰富经验。

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用方法、前沿科技资讯、产品评测、产品使用体验,以及产品优缺点分析、横向对比、技术沙龙参会体验等。我的分享聚焦于云服务产品评测、AI产品对比、开发板性能测试和技术报告

目前,我活跃在CSDN、51CTO、腾讯云、阿里云开发者社区、知乎、微信公众号、视频号、抖音、B站、小红书等平台,全网粉丝已超过30万。我所有平台的IP名称统一为猫头虎猫头虎技术团队

我希望通过我的分享,帮助大家更好地掌握和使用各种技术产品,提升开发效率与体验。


作者名片 ✍️

  • 博主猫头虎
  • 全网搜索关键词猫头虎
  • 作者微信号Libin9iOak
  • 作者公众号猫头虎技术团队
  • 更新日期2024年10月10日
  • 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!

加入我们AI共创团队 🌐

加入猫头虎的共创圈,一起探索编程世界的无限可能! 🚀

部分专栏链接

🔗 精选专栏


正文

🧐 这是一次技术上的大跨步!

今天在智谱的发布会现场,我亲眼目睹了AI与物理世界的首次亲密接触。你是不是还在想:AI一直在做什么?答对了!大多数AI大厂都在开发更强大的聊天机器人,刷榜、做PR无所不包。但很少有厂商真正关注AI如何改变我们的现实世界,如何与物理世界直接互动。

这次智谱的创新产品——GLM-PC,给出了答案。
在这里插入图片描述

💡 智谱新突破:AI如何“操作”物理世界?

你没看错!GLM-PC不仅仅是一个Chatbot,它是一种完全不同的产品形态:从纯粹的语言理解转向物理世界的交互。

通过GLM-PC,AI不仅能理解语义、感知场景,还能在操作中进行决策判断。这让它不再是单纯的执行者,而是能够主动判断任务是否合理的智能助手!💡

🌟 AI让你“控制”电脑,打破边界

除了与物理世界的连接,GLM-PC还支持我用手机控制电脑,完成复杂的操作。比如,让AI在B站为我点赞投币!任务完成得非常顺利,而且它还主动停下来确认“投币”操作,因为AI知道这是一个会消耗虚拟货币的敏感操作。

这种智能化的“自主决策”机制,极大提升了AI的可操作性和用户体验。特别是在做一些类似打卡、支付等敏感操作时,AI会主动发起确认,避免误操作。💸

🖼️ AI操作

在这里插入图片描述

🤖 产品内测地址分享:体验智能化未来

内测地址就在这里!【GLM-PC内测地址】💻

另外,还有一款针对手机的产品——AutoGLM,它可以帮助你在手机上完成类似的智能任务,支持日程管理、打卡等操作,非常方便。

💥 再度开源!GLM4-Edge亮相

不仅如此,智谱还在今天发布了GLM4-Edge端侧模型,推出了1.5B / 2B / 4B / 5B不同尺寸的大语言模型和多模态理解模型。为了让更多开发者和技术人员受益,智谱还将这个产品开源了!🎉

  • 小模型(1.5B / 2B):面向手机、车机等平台
  • 大模型(4B / 5B):专为PC平台优化

想了解更多技术细节吗?马上点击GitHub查看:https://github.com/THUDM/GLM-Edge

🎬 内测地址 - 打开智能操作的未来

如果你也想亲自体验这些前沿技术,快来加入内测吧!体验GLM-PC在真实环境下的操作,感受AI从语言理解到物理世界互动的巨大飞跃!

🎬 产品内测地址:

💬 结语:AI的未来已来,正等你来体验!

AI技术的进步不再只是停留在“理论”阶段,它已经开始真正地改变我们与世界的互动方式。从GLM-PCAutoGLM,从语义理解到物理操作,这一切都让我们对AI的未来充满期待。

想体验这些前沿技术吗?赶快动动手指,加入我们的内测,亲身体验AI如何改变世界吧!🔥

💬 你怎么看AI与物理世界的深度融合?留言告诉我你的看法!如果你也对这项技术感兴趣,记得关注我们,获取更多精彩内容!


希望这篇文章对你有所启发!如果有任何问题或建议,欢迎在评论区留言,我们一起探讨,共同进步!✨


粉丝福利


👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎,期待与您的交流! 🦉💬

🌐 第一板块:国内可以直接使用的ChatGPT平台

  • 链接:[直达链接]https://zhaimengpt1.kimi.asia/list
  • 优势:这是一个新建的站点,运行稳定。如果您想体验最新的ChatGPT服务,请不要错过!欢迎加我微信体验更多功能。

https://zhaimengpt1.kimi.asia/list

💳 第二板块:最稳定的ChatGPT会员充值平台

  • 链接:[直达链接]https://bewildcard.com/?code=CHATVIP
  • 特点:这是一个经过长时间使用验证的稳定充值平台,适合需要长期使用ChatGPT服务的用户。
    https://bewildcard.com/?code=CHATVIP

联系我与版权声明 📩

  • 联系方式
    • 微信: Libin9iOak
    • 公众号: 猫头虎技术团队
  • 版权声明
    本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页

点击✨⬇️下方名片⬇️✨,加入猫头虎AI共创社群矩阵。一起探索科技的未来,共同成长。🚀

<think>好的,用户想要在Python中调用智谱GLM-4-Flash模型的示例代码。我需要先确认用户的需求,然后从提供的引用中找到相关的信息。 首先,查看用户提供的引用内容。引用[2]提到一个基于GLM-4-Flash的Python示例程序,结合了PyQt5做了一个聊天工具。引用[3]详细列出了智谱AI的各种模型,其中GLM-4-Flash是免费调用的,并且提到了Python的API接口。 接下来,我需要根据这些引用信息整理出示例代码的步骤。通常调用API需要几个步骤:安装必要的库、设置API密钥、发送请求和处理响应。引用[3]中提到了API的基本信息,比如模型名称和参数设置,但具体的代码可能需要参考官方文档或示例。 不过,引用[2]中说明官方提供了Python的示例程序,结合PyQt5。但用户可能只需要基本的调用代码,不需要GUI部分。所以应该提取核心的API调用部分。例如,使用requests库发送HTTP请求,或者使用智谱提供的SDK。 检查引用[3],里面提到了不同模型的上下文长度和输出限制,但示例代码可能需要更具体的信息,比如API的端点URL、请求头、数据格式等。通常,调用这类API需要API密钥,用户需要先注册获取。 可能的步骤是: 1. 安装必要的库,比如requests或zhipuai。 2. 导入库并设置API密钥。 3. 构造请求数据,包括模型名称、消息内容、温度等参数。 4. 发送POST请求到API端点。 5. 处理返回的JSON数据,提取回复内容。 需要确保引用的信息准确。引用[3]中提到GLM-4-Flash的API是免费的,所以用户需要先到智谱AI平台注册获取API key。然后,根据官方文档,构造正确的请求格式。 可能遇到的错误包括API密钥未设置、参数错误或网络问题。在示例代码中需要提醒用户替换自己的API密钥,并处理可能的异常。 最后,生成相关问题,帮助用户深入使用,比如处理流式响应、异步调用或结合其他框架。</think>以下是基于智谱AI官方文档整理的Python调用GLM-4-Flash模型的基础示例代码: ```python import requests import json # 从智谱AI开放平台获取API_KEY(需注册) API_KEY = "your_api_key_here" # 替换为实际API密钥 def glm4_flash_chat(prompt): url = "https://open.bigmodel.cn/api/paas/v4/chat/completions" headers = { "Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json" } data = { "model": "GLM-4-Flash", # 指定模型版本[^3] "messages": [{"role": "user", "content": prompt}], "temperature": 0.7, # 控制生成随机性(0~1) "max_tokens": 1024 # 限制最大输出长度[^3] } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.json()["choices"][0]["message"]["content"] else: return f"请求失败,状态码:{response.status_code}" # 示例调用 response = glm4_flash_chat("用Python写一个快速排序算法") print(response) ``` 代码说明: 1. 需要先到[智谱AI开放平台](https://open.bigmodel.cn)注册获取API密钥[^3] 2. `model`参数必须指定为`GLM-4-Flash`才能调用该免费模型 3. `max_tokens`参数需控制在4K以内(即4096)[^3]
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值