基于UnetPlusPlus(Unet++)实现的医学图像分割

1、前言

unetPlusPlus 在unet 的基础上增添了密集连接的结构,有点像densenet网络

因为这种密集连接,unet++可以实现剪枝的轻量化操作。由于本人的没有接触过这种剪枝、蒸馏之类的轻量化方法,所以不多赘述

 

本章仅仅根据unet++模型实现医学图像分割的任务,为了更好的调节参数(学习率衰减策略、优化器等等),做对比实验,这里统一进行实现

项目下载在最后

2、罗里吧嗦的话

医学图像分割任务中,二值分割任务较多,这里实现的代码仅对二值分割数据处理

2.1 dice

因为之前实现的评估指标都是iou,但之前很多人联系本人都想要dice来评估模型。其实dice和iou指标是一一对应的,两者之间存在函数关系,之前 Unet 代码加个函数就可以简单实现,当然这样计算略显麻烦,可以直接通过TP、FP直接计算dice更好

二值分割的任务,网络的输出可以直接固定为1,这样通过对输出结果进行阈值处理得到的仍然是二值图像。虽然之前使用的都是交叉熵,取不同channel 输出概率最大值的索引当做输出的灰度值,多类别方便

但其实一开始我们分割二值图像的时候,用的就是输出通道为1,然后根据0阈值判断前景和背景的,例如:UNet - 训练数据train_unet train-CSDN博客

这样好处很多,减少运算量啊、可以用更好的损失函数等等。

本章代码使用的目标函数就是BCE逻辑损失函数

2.2 学习率衰减策略

学习率的衰减策略采用下面三个:

恒定的学习率、step 学习率衰减、cos余弦退火衰减

黄色框是统一的设定的初始学习率

红色框指定选择的哪一种学习效衰减策略

蓝色框是cos衰减的衰减因子,最后的lr = 初始lr * lrf

绿色框是step衰减的epoch、gamma系数。本章中,代码会在第10和第20个epoch的时候,lr衰减0.1倍率

2.3 加载数据的一些问题

我们的分割是有监督学习,也就是image有对应的mask标签,那么如何对应数据和标签很重要。当然实现很简单,基本上数据都是文件名一样或者后缀有一点点不一样的。

这里更改下面参数即可,上面是数据的后缀,下面是mask数据的后缀

在标签为图像的分割数据里,mask灰度值不严谨就很难受。

因为有的任务明明是二值分割,然而有的数据为了方便可视化啊之类的,mask用的是灰度数据,而非0 1这样的阈值图像。当然不管怎么标注,只要标注是对的,都可以根据自定义的数据加载脚本进行数据预处理。

本章处理的很简单,也是阈值处理

这里的阈值不太好确定,但基本上都是0为背景,其余的灰度值为前景。

所以这里通过下面的参数进行阈值处理

3、测试项目

数据集按照下面摆放即可

3.1 训练

训练展示部分如下:

训练过程:

需要注意的是,进度条的loss、dice显示是实时的一个batch的loss和dice

训练一轮的打印是整个数据集的平均loss和dice

 

训练结束后:会载入最好权重进行验证

 

3.2 生成的结果

如下:

学习率下降图:

loss和dice图

预处理数据结果图:

训练日志:

3.3 推理

需要推理的图像放在inference下即可:

本项目测试的数据为大脑MRI的肿瘤分割:基于UnetPlusPlus网络对大脑肿瘤分割实战【包含数据集、完整代码、训练好的结果、权重文件等等】资源-CSDN文库

 

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是基于Pytorch实现医学图像语义分割Unet++的代码: ```python import torch import torch.nn as nn from torchvision import models class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True, bn=True): super(ConvBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias) self.bn = nn.BatchNorm2d(out_channels) if bn else None self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) x = self.relu(x) return x class UpConv(nn.Module): def __init__(self, in_channels, out_channels, upscale_factor, mode='transpose', align_corners=True): super(UpConv, self).__init__() self.upscale_factor = upscale_factor self.align_corners = align_corners if mode == 'transpose': self.conv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2*self.upscale_factor, stride=self.upscale_factor, padding=self.upscale_factor//2, output_padding=self.upscale_factor%2, bias=True) else: self.conv = nn.Sequential( nn.Upsample(scale_factor=self.upscale_factor, mode=mode, align_corners=self.align_corners), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True) ) def forward(self, x): return self.conv(x) class NestedUNet(nn.Module): def __init__(self, in_channels=1, out_channels=2, init_features=32): super(NestedUNet, self).__init__() self.down1 = nn.Sequential( ConvBlock(in_channels, init_features, bn=False), ConvBlock(init_features, init_features*2) ) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.down2 = nn.Sequential( ConvBlock(init_features*2, init_features*2*2), ConvBlock(init_features*2*2, init_features*2*2*2) ) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.down3 = nn.Sequential( ConvBlock(init_features*2*2*2, init_features*2*2*2*2), ConvBlock(init_features*2*2*2*2, init_features*2*2*2*2*2) ) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.down4 = nn.Sequential( ConvBlock(init_features*2*2*2*2, init_features*2*2*2*2*2), ConvBlock(init_features*2*2*2*2*2, init_features*2*2*2*2*2*2) ) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.bottom = nn.Sequential( ConvBlock(init_features*2*2*2*2*2, init_features*2*2*2*2*2*2), ConvBlock(init_features*2*2*2*2*2*2, init_features*2*2*2*2*2*2), UpConv(init_features*2*2*2*2*2*2, init_features*2*2*2*2*2, upscale_factor=2) ) self.up4 = nn.Sequential( ConvBlock(init_features*2*2*2*2*2, init_features*2*2*2*2*2), ConvBlock(init_features*2*2*2*2*2, init_features*2*2*2*2), UpConv(init_features*2*2*2*2, init_features*2*2, upscale_factor=2) ) self.up3 = nn.Sequential( ConvBlock(init_features*2*2*2*2, init_features*2*2), ConvBlock(init_features*2*2, init_features*2), UpConv(init_features*2, init_features, upscale_factor=2) ) self.up2 = nn.Sequential( ConvBlock(init_features*2*2, init_features), ConvBlock(init_features, init_features), UpConv(init_features, init_features//2, upscale_factor=2) ) self.up1 = nn.Sequential( ConvBlock(init_features, init_features//2), ConvBlock(init_features//2, out_channels) ) def forward(self, x): x1 = self.down1(x) x2 = self.pool1(x1) x2 = self.down2(x2) x3 = self.pool2(x2) x3 = self.down3(x3) x4 = self.pool3(x3) x4 = self.down4(x4) btm = self.pool4(x4) btm = self.bottom(btm) x4 = torch.cat([btm, x4], dim=1) x4 = self.up4(x4) x3 = torch.cat([x4, x3], dim=1) x3 = self.up3(x3) x2 = torch.cat([x3, x2], dim=1) x2 = self.up2(x2) x1 = torch.cat([x2, x1], dim=1) x1 = self.up1(x1) return x1 ``` 这段代码实现了一个基于Pytorch的NestedUNet模型,包含四个下采样/池化层和四个上采样/卷积层。其中,第一个下采样/池化层的输出被送入第二个下采样/池化层,以此类推。最后的bottom层会将最后一层下采样/池化层的输出送入上采样/卷积层,以生成最终的分割结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值