MedSAM 学习笔记(续):利用训练好的权重进行gui的推理

1、介绍

MedSAM 代码复现参考:第一章:MedSAM 视觉大模型介绍_medsam 系统简介-CSDN博客

利用MedSAM迁移学习训练自定义数据集介绍:MedSAM 学习笔记(续):训练自定义数据集_sam训练自定义数据-CSDN博客

本文将根据在自定义数据集上训练好的权重进行GUI图形化的推理

因为sam模型核心思想是根据提示信息进行推理,所以推理的时候不仅仅需要图像数据,还要加上提示信息(point、bbox、txt等等)。因为无论那种提示信息输入都会很麻烦,所以源代码提供了gui的界面,直接鼠标点击绘制点或者bbox即可

2、生成数据

对于medsam的训练数据是npy格式,是在nii.gz  格式中切片、经过windowing对比度增强,以及归一化之后得到的npy格式的数据。

因为推理的时候,我们需要的是输入图像(jpg、png、jpeg等等),所以这里需要进行格式的

代码很简单,可以参考下面:

import numpy as np
import cv2


img_path = 'CT_Abd_liver_0-000.npy'
img = np.load(img_path)

print(img.shape)    # (1024, 1024, 3)
img = img * 255
img = cv2.imwrite('demo.png',img)

转换生成的数据如下:

3、利用GUI图形推理

这里更改两个地方即可

第一个,在gui.py 脚本中,更改为训练好的权重

 

第二个,在 ' MedSAM\segment_anything\build_sam.py ' 最后面

因为这里训练的结果是字典,所以导入权重的时候,还需要取出model的val值

然后运行gui.py 脚本即可:

因为官方给的指标只有训练的loss,没有dice啥的,可以保存好mask,然后拿真是gt计算下dice即可,也很简单的

本地代码是调试成功了,后续有什么问题的话,再说吧

### MedSAM2 使用教程概述 MedSAM2 是基于 MedSAM 的升级版本,在保持原有功能的基础上进行了优化和扩展。此部分将详细介绍 MedSAM2 的使用方法、配置方式以及一些实用案例。 #### 项目初始化与安装依赖 为了顺利运行 MedSAM2,需先完成 Python 环境搭建,并通过 pip 安装所需库: ```bash pip install -r requirements.txt ``` 这一步骤会自动下载并安装所有必要的第三方包[^1]。 #### 数据准备 在开始之前,确保已准备好待处理的医学影像数据集。这些数据应按照特定格式整理好,通常包括但不限于 CT 扫描图、MRI 图像等。对于每种类型的输入数据,都应当有一个对应的标签文件来指导模型训练过程[^2]。 #### 模型加载与预测流程 一旦完成了前期准备工作,则可以通过如下代码片段轻松调用预训练好的 MedSAM2 模型来进行推理操作: ```python from medsam2 import load_model, predict model = load_model('path/to/pretrained_weights') predictions = predict(model=model, input_data='your_input_image_path') ``` 上述命令将会返回经过分割后的结果 `predictions` ,可以直接用于后可视化展示或进一步分析处理. #### 参数调整指南 考虑到不同应用场景下的特殊需求,MedSAM2 还提供了丰富的可调节超参选项。比如改变卷积核大小、增加/减少网络层数量等等。具体设置可通过修改配置文件实现: ```yaml # config.yaml example snippet architecture: kernel_size: [3, 5] training_parameters: batch_size: 8 epochs: 50 ``` 更多关于如何自定义参数的信息可以在官方文档中找到详细说明. #### 实际应用实例分享 最后值得一提的是,除了基本的功能外,MedSAM2 已经被广泛应用于多个领域之中,如肿瘤检测与定位、组织结构分割等方面均取得了显著成效。例如,在某项研究中利用该技术成功实现了对肝脏恶性肿瘤的有效识别;而在另一场景下则帮助外科医生更精准地规划手术路径.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值