机器学习 4种常见目标函数介绍+代码实现

目标函数在机器学习中至关重要,不同的目标函数甚至能影像模型的性能。

目标函数类似于损失函数的总称,然后让目标函数优化取得最大或者最小值这样,总而让网络收敛

更多介绍参考本专栏:pytorch 深度学习初体验_喵星人监护人的博客-CSDN博客

1、 线性函数

线性函数是机器学习、深度学习中最简单的目标函数之一

线性函数是一种最简单的核函数,它假设样本在原始特征空间上是线性可分的,因此在不引入额外的复杂度的情况下,直接在原始特征空间上进行内积计算

实验代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC

# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)

# 使用线性核函数的 SVM 分类器
svm_linear = SVC(kernel='linear')
svm_linear.fit(X, y)

# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')

# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_linear.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_linear.support_vectors_[:, 0], svm_linear.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('Linear SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

代码使用线性目标函数的 SVM对数据进行二分类、线性分类,然后绘制决策边界

关于线性目标函数的实战代码可以参考:

用反向传播实现线性回归_线性回归反向传播算法-CSDN博客

2、 多项式目标函数

多项式目标函数是支持向量机(SVM)中常用的一种目标函数

通过将样本映射到高维空间来实现非线性分类

与线性目标函数不同,多项式目标函数可以处理线性不可分的情况

实验代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC

# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)

# 使用多项式核函数的 SVM 分类器
svm_poly = SVC(kernel='poly', degree=3)  # 3次多项式核函数
svm_poly.fit(X, y)

# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')

# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_poly.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_poly.support_vectors_[:, 0], svm_poly.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('Polynomial SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

 

本代码通过多项式目标函数的SVM进行分类,更多的多项式拟合可以参考:

pytorch 多项式回归-CSDN博客

3、 高斯函数

高斯目标函数,也称为径向基函数(RBF)目标函数,是支持向量机(SVM)中常用的一种目标函数

将样本映射到无限维的特征空间,通过衡量样本之间的相似性来进行非线性分类。

实验代码:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.svm import SVC

# 生成一个线性不可分的数据集
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=42)

# 使用高斯核函数的 SVM 分类器
svm_rbf = SVC(kernel='rbf', gamma=0.5)  # gamma 控制高斯核的宽度
svm_rbf.fit(X, y)

# 绘制决策边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, marker='o', edgecolors='k')

# 生成网格数据用于绘制决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = svm_rbf.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# 绘制决策边界和支持向量
plt.contourf(xx, yy, Z, alpha=0.2, cmap=plt.cm.Paired)
plt.scatter(svm_rbf.support_vectors_[:, 0], svm_rbf.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
plt.title('RBF SVM Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()

高斯目标函数的 SVM 分类器。将高斯核的宽度参数设定为 0.5,然后绘制出了决策边界和支持向量

 4、 sigmoid 函数

sigmoid 函数是机器学习、深度学习常见的函数,可以将样本映射到非线性空间,处理线性不可分的情况

实验代码:

import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch import optim
import numpy as np

torch.manual_seed(1)  # 保证程序随机生成数一样

x1 = torch.rand(200) * 2
x2 = torch.rand(200) * 2
data = zip(x1, x2)
pos = []  # 定义类型 1
neg = []  # 定义类型 2


def classification(data):
    for i in data:
        if (i[1] - i[0] < 0):
            pos.append(i)
        else:
            neg.append(i)


classification(data)
pos_x = [i[0] for i in pos]
pos_y = [i[1] for i in pos]
neg_x = [i[0] for i in neg]
neg_y = [i[1] for i in neg]
plt.scatter(pos_x, pos_y, c='r')
plt.scatter(neg_x, neg_y, c='b')
plt.show()

x_data = [[i[0], i[1]] for i in pos]
x_data.extend([[i[0], i[1]] for i in neg])
x_data = torch.Tensor(x_data)  # 输入数据 feature

y_data = [1 for i in range(len(pos))]
y_data.extend([0 for i in range(len(neg))])
y_data = torch.Tensor(y_data).view(-1, 1)  # 对应的标签


class LogisticRegressionModel(nn.Module):  # 定义网络
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.linear(x)
        x = self.sigmoid(x)
        return x


model = LogisticRegressionModel()
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

for epoch in range(10000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)  # 计算损失值

    if epoch % 1000 == 0:
        print(epoch, loss.item())  # 打印损失值

    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 反向传播
    optimizer.step()  # 梯度更新

w = model.linear.weight[0]  # 取出训练完成的结果
w0 = w[0]
w1 = w[1]
b = model.linear.bias.item()

with torch.no_grad():  # 绘制决策边界,这里不需要计算梯度
    x = torch.arange(0, 3).view(-1, 1)
    y = (- w0 * x - b) / w1
    plt.plot(x.numpy(), y.numpy())

plt.scatter(pos_x, pos_y, c='r')
plt.scatter(neg_x, neg_y, c='b')
plt.xlim(0, 2)
plt.ylim(0, 2)
plt.show()

代码生成包含两个特征的坐标点,然后通过sigmoid实现逻辑回归。

具体参考:pytorch 实现逻辑回归_pytorch 逻辑回归-CSDN博客

训练过程及结果:

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵星人监护人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值