unet 基于 DRIVE 语义分割的完整项目

该博客详细介绍了如何基于Python和深度学习库实现UNet模型对DRIVE数据集进行语义分割。内容涵盖数据加载、网络结构、训练过程、预处理、混淆矩阵计算以及预测。此外,还讨论了训练策略和图像增强的重要性。
摘要由CSDN通过智能技术生成

目录

1. 文件目录介绍

2. tools 结构

2.1 计算训练集的mean和std

2.2 语义分割中的混淆矩阵

2.3 自定义预处理

3.  model 中的 unet 网络

4. 数据加载 dataset

5. train 过程

6. 可视化数据

7. utils 工具函数

8. 训练过程的一些点

9. predict预测

10. 关于如何训练


1. 文件目录介绍

完整下载路径:unet对DRIVE数据集的完整项目

文件夹信息如下所示:

剩下的就是常用的py文件

  • dataset 加载DRIVE数据集
  • model 存放unet模型
  • predict 根据最好的权重对图片进行预测
  • train 网络训练的主函数
  • utils 需要用到的工具函数

 

2. tools 结构

tools 里面存放三个py文件:计算训练集的mean和std、混淆矩阵的实现、自定义预处理的实现

因为防止utils的代码太多冗余,所以将其他的类定义在tools里面,然后utils调用tools里面的函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ai 医学图像分割

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值