怎么计算数据的均值和方差

1. 前言

pytorch 跑深度学习数据集的时候,需要先将数据归一化,可以让网络更好的收敛。一般的均值和方差都是利用(灰度值 - 0.5 )/ 0.5

本章提供一个计算均值和方差的代码,供以后使用

2. 完整代码

代码如下:

import numpy as np
import os
from PIL import Image
import cv2


# 输入 PyTorch的 dataset, 输出均值和标准差
def compute_mean_and_std(path):
    img_path = [os.path.join(path,i) for i in os.listdir(path)]         # 所有数据的绝对路径

    mean_r,mean_g,mean_b = 0,0,0

    for i in img_path:
        img = np.array(Image.open(i).convert('RGB'))
        img = cv2.cvtColor(img,cv2.COLOR_RGB2BGR)

        mean_b += np.mean(img[:, :, 0])               # 所有数据的灰度值相加
        mean_g += np.mean(img[:, :, 1])
        mean_r += np.mean(img[:, :, 2])

    mean_b /= len(img_path)             # 平均灰度
    mean_g /= len(img_path)
    mean_r /= len(img_path)

    N = 0
    diff_r, diff_g, diff_b = 0, 0, 0
    for i in img_path:
        img = np.array(Image.open(i).convert('RGB'))
        img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

        diff_b += np.sum(np.power(img[:, :, 0] - mean_b, 2))
        diff_g += np.sum(np.power(img[:, :, 1] - mean_g, 2))
        diff_r += np.sum(np.power(img[:, :, 2] - mean_r, 2))
        N += np.prod(img[:, :, 0].shape)

    std_b = np.sqrt(diff_b / N)
    std_g = np.sqrt(diff_g / N)
    std_r = np.sqrt(diff_r / N)

    mean = (mean_b.item() / 255.0, mean_g.item() / 255.0, mean_r.item() / 255.0)
    std = (std_b.item() / 255.0, std_g.item() / 255.0, std_r.item() / 255.0)
    return np.round(mean,3),np.round(std,3)


if __name__ == '__main__':
    root = './data'                 # 数据的根目录
    mean,std = compute_mean_and_std(path=root)
    print(mean)
    print(std)

3. 介绍

均值和方差计算就是简单利用数学方法计算

这里需要注意的是,有些数据集是单通道的,这样代码计算3通道就会报错。所以这里用PIL和opencv 将图像转换

传入数据的时候,只需要传入父目录即可,demo脚本和data在同一路径下

  • 8
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值