Pytorch神经网络工具箱

Pytorch神经网络工具箱

神经网络核心组件

  • 层:神经网络的基本结构,将输入张量转换为输出张量。
  • 模型:层构成的网络。
  • 损失函数:参数学习的目标函数,通过最小化损失函数来学习各种参数。
  • 优化器:如何使损失函数最小,这就涉及优化器。

多个层链接在一起构成一个模型或网络,输入数据通过这个模型转换为预测值,然后
损失函数把预测值与真实值进行比较,得到损失值(损失值可以是距离、概率值等),该
损失值用于衡量预测值与目标结果的匹配或相似程度,优化器利用损失值更新权重参数,
从而使损失值越来越小。这是一个循环过程,当损失值达到一个阀值或循环次数到达指定
次数,循环结束。

神经网络实例

在这里插入图片描述

步骤

  • 利用PyTorch内置函数mnist下载数据。
  • 利用torchvision对数据进行预处理,调用torch.utils建立一个数据迭代器。
  • 可视化源数据。
  • 利用nn工具箱构建神经网络模型。
  • 实例化模型,并定义损失函数及优化器。
  • 训练模型。
  • 可视化结果。

使用两个隐含层,每层激活函数为ReLU,最后使用torch.max(out,1)找出张量out最大
值对应索引作为预测值。

在这里插入图片描述

准备数据

import torch
# 导入 PyTorch 内置的 mnist 数据
from torchvision.datasets import mnist
#导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
#导入nn及优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import nn	
# 定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5
#下载数据并对数据进行预处理
#定义预处理函数,这些预处理依次放在Compose函数中。
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5], [0.5])])
#下载数据,并对数据进行预处理
train_dataset = mnist.MNIST('./data', train=True, transform=transform, download=True)
test_dataset = mnist.MNIST('./data', train=False, transform=transform)
#dataloader是一个可迭代对象,可以使用迭代器一样使用。
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False)

说明:

  • transforms.Compose可以把一些转换函数组合在一起;
  • Normalize([0.5],[0.5])对张量进行归一化,这里两个0.5分别表示对张量进行归一化
    的全局平均值和方差。因图像是灰色的只有一个通道,如果有多个通道,需要有多个数
    字,如3个通道,应该是Normalize([m1,m2,m3],[n1,n2,n3]);
  • download参数控制是否需要下载,如果./data目录下已有MNIST,可选择False;
  • 用DataLoader得到生成器,这可节省内存。

可视化源数据

import matplotlib.pyplot as plt
%matplotlib inline
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
fig = plt.figure()
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])

结果:

在这里插入图片描述

构建模型

#构建网络
#使用sequential构建网络,Sequential()函数功能是将网络的层组合到一起
class Net(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(Net, self).__init__()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1),nn.BatchNorm1d(n_hidden_1))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2),nn.BatchNorm1d (n_hidden_2))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
    def forward(self, x):
        x = F.relu(self.layer1(x))
        x = F.relu(self.layer2(x))
        x = self.layer3(x)
        return x
#实例化网络
#检测是否有可用的GPU,有则使用,否则使用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#实例化网络
model = Net(28 * 28, 300, 100, 10)
model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)

训练模型

#训练模型
# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []
for epoch in range(num_epoches):
    train_loss = 0
    train_acc = 0
    model.train()
    #动态修改参数学习率
    if epoch%5 == 0:
        optimizer.param_groups[0]['lr']*=0.1
    for img,label in train_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0),-1)
        #前向传播
        out = model(img)
        loss = criterion(out,label)
        #反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        #记录误差
        train_loss += loss.item()
        #计算分类的准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        train_acc+=acc
    losses.append(train_loss / len(train_loader))
    acces.append(train_acc / len(train_loader))
    #在测试集上检验效果
    eval_loss = 0
    eval_acc = 0
#将模型改为预测模式
    model.eval()
    for img,label in test_loader:
        img = img.to(device)
        label = label.to(device)
        img = img.view(img.size(0),-1)
        out = model(img)
        loss = criterion(out,label)
        #记录误差
        eval_loss += loss.item()
        #记录准确率
        _, pred = out.max(1)
        num_correct = (pred == label).sum().item()
        acc = num_correct / img.shape[0]
        eval_acc += acc
    eval_losses.append(eval_loss / len(test_loader))
    eval_acces.append(eval_acc / len(test_loader))
    print('epoch:{}, Train Loss:{:.4f}, Train Acc:{:.4f}, Test Loss:{:.4f}, Test Acc:{:.4f}'
         .format(epoch,train_loss/len(train_loader),train_acc/len(train_loader),eval_loss / len(test_loader),eval_acc/len(test_loader)))
    

训练结果:

epoch: 0, Train Loss: 1.0359, Train Acc: 0.7792, Test Loss: 0.5616, Test Acc: 0.8989
epoch: 1, Train Loss: 0.4859, Train Acc: 0.8994, Test Loss: 0.3535, Test Acc: 0.9253
epoch: 2, Train Loss: 0.3507, Train Acc: 0.9193, Test Loss: 0.2756, Test Acc: 0.9382
epoch: 3, Train Loss: 0.2858, Train Acc: 0.9318, Test Loss: 0.2281, Test Acc: 0.9452
epoch: 4, Train Loss: 0.2433, Train Acc: 0.9402, Test Loss: 0.1975, Test Acc: 0.9514
epoch: 5, Train Loss: 0.2244, Train Acc: 0.9444, Test Loss: 0.1954, Test Acc: 0.9526
epoch: 6, Train Loss: 0.2193, Train Acc: 0.9462, Test Loss: 0.1899, Test Acc: 0.9535
epoch: 7, Train Loss: 0.2176, Train Acc: 0.9465, Test Loss: 0.1914, Test Acc: 0.9527
epoch: 8, Train Loss: 0.2130, Train Acc: 0.9482, Test Loss: 0.1864, Test Acc: 0.9542
epoch: 9, Train Loss: 0.2131, Train Acc: 0.9466, Test Loss: 0.1836, Test Acc: 0.9547
epoch: 10, Train Loss: 0.2092, Train Acc: 0.9484, Test Loss: 0.1866, Test Acc: 0.9540
epoch: 11, Train Loss: 0.2090, Train Acc: 0.9480, Test Loss: 0.1839, Test Acc: 0.9551
epoch: 12, Train Loss: 0.2087, Train Acc: 0.9483, Test Loss: 0.1854, Test Acc: 0.9547
epoch: 13, Train Loss: 0.2086, Train Acc: 0.9482, Test Loss: 0.1832, Test Acc: 0.9543
epoch: 14, Train Loss: 0.2077, Train Acc: 0.9483, Test Loss: 0.1845, Test Acc: 0.9544
epoch: 15, Train Loss: 0.2081, Train Acc: 0.9495, Test Loss: 0.1849, Test Acc: 0.9543
epoch: 16, Train Loss: 0.2075, Train Acc: 0.9491, Test Loss: 0.1831, Test Acc: 0.9547
epoch: 17, Train Loss: 0.2099, Train Acc: 0.9478, Test Loss: 0.1844, Test Acc: 0.9550
epoch: 18, Train Loss: 0.2086, Train Acc: 0.9486, Test Loss: 0.1835, Test Acc: 0.9537
epoch: 19, Train Loss: 0.2078, Train Acc: 0.9491, Test Loss: 0.1840, Test Acc: 0.9542

可视化训练及测试损失值:

plt.title('trainloss')
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')

在这里插入图片描述

构建神经网络

构建网络层

如果要对每层定义一个名称,我们可以采用Sequential的一种改进方法,在Sequential的基础上,通过add_module()添加每一层,并且为每一层增加一个单独的名字。此外,还可以在Sequential基础上,通过字典的形式添加每一层,并且设置单独的层名称。

#采用字典形式构建网络
class Net(torch.nn.Module):
    def __init__(self):
        super(Net4, self).__init__()
        self.conv = torch.nn.Sequential(
            OrderedDict(
            [
            ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
            ("relu1", torch.nn.ReLU()),
            ("pool", torch.nn.MaxPool2d(2))
            ]
            ))
        self.dense = torch.nn.Sequential(
            OrderedDict([
            ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
            ("relu2", torch.nn.ReLU()),
            ("dense2", torch.nn.Linear(128, 10))
            ])
    )

前向传播

定义好每层后,最后还需要通过前向传播的方式把这些串起来。这就是涉及如何定义forward函数的问题。forward函数的任务需要把输入层、网络层、输出层链接起来,实现信息的前向传导。该函数的参数一般为输入数据,返回值为输出数据。

反向传播

使用nn工具箱,无须我们自己编写反向传播,直接让损失函数(loss)调用backward()即可。

训练模型

层、模型、损失函数和优化器等都定义或创建好,接下来就是训练模型。训练模型时需要注意使模型处于训练模式,即调用model.train()。调用model.train()会把所有的module设置为训练模式。如果是测试或验证阶段,需要使模型处于验证阶段,即调用model.eval(),调用model.eval()会把所有的training属性设置为False。
缺省情况下梯度是累加的,需要手工把梯度初始化或清零,调用optimizer.zero_grad()即可。训练过程中,正向传播生成网络的输出,计算输出和实际值之间的损失值。调用loss.backward()自动生成梯度,然后使用optimizer.step()执行优化器,把梯度传播回每个网络。
如果希望用GPU训练,需要把模型、训练数据、测试数据发送到GPU上,即调用.to(device)。

神经网络工具箱nn

nn.Module

nn.Module是nn的一个核心数据结构,它可以是神经网络的某个层(Layer),也可以是包含多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,生成自己的网络/层。

nn.functional

nn中的层,一类是继承了nn.Module,其命名一般为nn.Xxx(第一个是大写),如nn.Linear、nn.Conv2d、nn.CrossEntropyLoss等。另一类是nn.functional中的函数,其名称一般为nn.funtional.xxx,如nn.funtional.linear、nn.funtional.conv2d、nn.funtional.cross_entropy等。从功能来说两者相当,基于nn.Moudle能实现的层,使用
nn.funtional也可实现,反之亦然,而且性能方面两者也没有太大差异。

优化器

所有的优化方法都是继承了基类optim.Optimizer,并实现了自己的优化步骤。

#导入optim模块,实例化SGD优化器,使用动量参数momentum
import torch.optim as optim
optimizer = optim.SGD(model.parameters(),lr=lr,momentum=momentum)
#前向传播
#把输入数据传入神经网络Net实例化对象model中,自动执行forward函数,得到out输
#出值,然后用out与标记label计算损失值loss。
out = model(img)
loss = criterion(out,label)
#清空梯度
#缺省情况下,梯度是累加的,在梯度反向传播前,先需把梯度清零
optimizer.zero_grad()
#反向传播
#基于损失值,把梯度进行反向传播
loss.backward()
#更新参数
optimizer.step()

动态修改学习率参数

修改参数的方式可以通过修改参数optimizer.params_groups或新建optimizer。新建optimizer比较简单,optimizer十分轻量级,所以开销很小。但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡。所以,这里直接采用修改参数optimizer.params_groups。

optimizer.param_groups:长度1的list,optimizer.param_groups[0]:长度为8的字典,包括权重参数、lr、momentum等参数。

优化器比较

#导入需要的模块
import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
%matplotlib inline
#超参数
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

#生成训练数据
#torch,unsqueeze()的作用是将一维转换为二维,torch只能处理二维的数据
x = torch.unsqueeze(torch.linspace(-1,1,1000),dim=1)
#0.1*torch.normal(x.size())增加噪点
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

torch_dataset = Data.TensorDataset(x,y)
#得到一个带批量的生成器
loader = Data.DataLoader(dataset=torch_dataset,batch_size=BATCH_SIZE,shuffle=True)

#构建神经网络
class Net(torch.nn.Module):
    #初始化
    def __init__(self):
        super(Net,self).__init__()
        self.hidden = torch.nn.Linear(1,20)
        self.predict = torch.nn.Linear(20,1)
    #前向传播
    def forward(self,x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

#使用多种优化器
net_SGD = Net()
net_Momentum = Net()
net_RMSProp = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSProp, net_Adam]
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.9)
opt_RMSProp = torch.optim.RMSprop(net_RMSProp.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSProp, opt_Adam]

#训练模型
loss_func = torch.nn.MSELoss()
loss_his = [[],[],[],[]] #记录损失
for epoch in range(EPOCH):
    for step,(batch_x,batch_y) in enumerate(loader):
        for net,opt,l_his in zip(nets,optimizers,loss_his):
            output = net(batch_x)#得到每个网络的输出
            loss = loss_func(output,batch_y)#计算每个网络的损失
            opt.zero_grad()#清理梯度
            loss.backward()#反向传播
            opt.step()#应用梯度
            l_his.append(loss.data.numpy())#损失记录
labels = ['SGD','Momentum','RMSprop','Adam']

#可视化
for i,l_his in enumerate(loss_his):
    plt.plot(l_his,label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0,0.2))
plt.show()

结果:

在这里插入图片描述

参考数据:《Python深度学习:基于PyTorch》

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
神经网络工具箱通常是指用于构建、训练和评估深度学习模型的各种软件库和平台,如TensorFlow、PyTorch、Keras等。以下是使用这类工具的一般步骤: 1. **安装与配置**:首先需要下载并安装相应的工具包,例如Python环境,并通过pip或其他包管理器安装所需的库,比如`tensorflow-gpu`或`pytorch`. 2. **导入模块**:在Python脚本中导入所需的神经网络模块,如`import tensorflow as tf`或`import torch`. 3. **设计模型架构**:基于任务需求,设计神经网络结构,包括输入层、隐藏层和输出层,可以利用框架提供的API(如tf.keras.layers或nn.Module)来创建。 4. **定义损失函数和优化器**:选择适当的损失函数衡量模型性能,如交叉熵对于分类任务;然后设置优化器,如Adam或SGD。 5. **准备数据**:将数据划分为训练集、验证集和测试集,进行预处理(如归一化、缩放),并将数据转化为模型所接受的张量或批次形式。 6. **训练模型**:用训练数据迭代地喂给模型,执行前向传播计算预测值,反向传播更新权重,通常会设置一个周期(epoch)和批量大小。 7. **监控与调整**:在每个epoch结束后,用验证集检查模型性能,如果性能不佳,可能需要调整超参数,如学习率、层数等。 8. **评估与保存**:完成训练后,在测试集上评估模型的最终性能。最后,可以选择保存模型以便后续使用或部署。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值