多维度输入

Diabetes Dataset:
在这里插入图片描述
在这里插入图片描述
逻辑回归模型: y ^ ( i ) = σ ( ∑ n = 1 8 x n ( i ) ∗ ω n + b ) \hat{y}^{(i)}=\sigma(\sum_{n=1}^8x_n^{(i)}*\omega_n+b) y^(i)=σ(n=18xn(i)ωn+b)
∑ n = 1 8 x n ( i ) ⋅ ω n = [ x 1 ( i ) ⋯ x N ( i ) ] [ ω 1 ⋮ ω 8 ] \sum_{n=1}^{8} x_{n}^{(i)} \cdot \omega_{n}=\left[x_{1}^{(i)} \quad \cdots \quad x_{N}^{(i)}\right]\left[\begin{array}{c} \omega_{1} \\ \vdots \\ \omega_{8} \end{array}\right] n=18xn(i)ωn=[x1(i)xN(i)] ω1ω8
y ^ ( i ) = σ ( [ x 1 ( i ) ⋯ x 8 ( i ) ] [ ω 1 ⋮ ω 8 ] + b ) = σ ( z ( i ) ) \begin{aligned} \hat{y}^{(i)} &=\sigma\left(\left[\begin{array}{lll} x_{1}^{(i)} & \cdots & x_{8}^{(i)} \end{array}\right]\left[\begin{array}{c} \omega_{1} \\ \vdots \\ \omega_{8} \end{array}\right]+b\right) \\ &=\sigma\left(z^{(i)}\right) \end{aligned} y^(i)=σ [x1(i)x8(i)] ω1ω8 +b =σ(z(i))
在这里插入图片描述
模型:
在这里插入图片描述

import torch
import numpy as np

xy = np.loadtxt('E:\\learning\\coding\\jupyter\\diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1])#除去最后一列的数据
y_data = torch.from_numpy(xy[:, [-1]])#最后一列

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.sigmoid = torch.nn.Sigmoid()#添加非线性激活变换
        
    def forward(self,x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x
    
model = Model()

criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)

for epoch in range(100):
    #前向传播
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())
    
    #反向传播
    optimizer.zero_grad()
    loss.backward()
    
    #更新
    optimizer.step()
    

结果:
在这里插入图片描述

多维度输入多维度输出的LSTM(长短期记忆)模型可以用于处理时间序列数据,并且能够接受多个特征作为输入,并输出多个特征。 在MATLAB中,我们可以使用深度学习工具箱来实现多维度输入多维度输出LSTM模型。以下是一个简单的实现示例: 首先,我们需要准备好训练数据。训练数据应该是一个三维矩阵,其中包含时间步、特征和样本的维度。对于LSTM模型,我们可以使用序列输入层来接受输入数据。 接下来,我们可以创建LSTM网络模型,并指定网络的层数、每个层的神经元数量以及激活函数。可以使用lstmLayer函数来创建每一层的LSTM层。 然后,我们需要定义网络的输出层。对于多维度输出,我们可以使用完全连接层来指定输出的维度,并使用softmax作为激活函数,以便输出概率值。 在训练之前,我们需要设置训练选项。我们可以指定训练的最大时期数、小批量大小以及优化器等。 接下来,我们可以使用trainNetwork函数来训练LSTM模型。将准备好的训练数据、网络模型和训练选项作为输入参数。 训练完成后,我们可以使用训练好的LSTM模型来进行预测。可以使用predict函数并提供新的输入数据,来获取模型的输出结果。 通过以上步骤,我们可以在MATLAB中实现多维度输入多维度输出的LSTM模型。这种模型对于处理时间序列数据,并进行时序预测,具有很大的应用潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值