LSTM & MultiheadAttention 输入维度

最近遇到点问题,对于模块的输入矩阵的维度搞不清楚,这里在学习一下,记录下来,方便以后查阅。

LSTM

LSTM是RNN的一种变种,可以有效地解决RNN的梯度爆炸或者消失问题。

在这里插入图片描述

记忆单元

LSTM引入了一个新的记忆单元 c t c_t ct,用于进行线性的循环信息传递,同时输出信息给隐藏层的外部状态 h t h_t ht。在每个时刻 t t t c t c_t ct记录了到当前时刻为止的历史信息。

门控机制

LSTM引入门控机制来控制信息传递的路径,类似于数字电路中的门,0即关闭,1即开启。

LSTM中的三个门为遗忘门 f t f_t ft,输入门 i t i_t it,和输出门 o t o_t ot

  • f t f_t ft控制上一个时刻的记忆单元 c t − 1 c_{t-1} ct1需要遗忘多少信息
  • i t i_t it控制当前时刻的候选状态 c ~ t \tilde{c}_t c~t有多少信息需要存储
  • o t o_t ot控制当前时刻的记忆单元 c t c_t ct有多少信息需要输出给外部状态 h t h_t ht

LSTM结构

如图一所示为LSTM的结构,LSTM网络由一个个的LSTM单元连接而成。

在这里插入图片描述

LSTM 的关键就是记忆单元,水平线在图上方贯穿运行。

记忆单元类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

LSTM的计算过程

遗忘门

在这里插入图片描述

在这一步中,遗忘门读取 h t − 1 h_{t-1} ht1 x t x_t xt,经由sigmoid,输入一个在0到1之间数值给每个在记忆单元 c t − 1 c_{t-1} ct1中的数字,1表示完全保留,0表示完全舍弃。

输入门

在这里插入图片描述
输入门将确定什么样的信息内存放在记忆单元中,这里包含两个部分。

  1. sigmoid层同样输出[0,1]的数值,决定候选状态 c ~ t \tilde{c}_t c~t有多少信息需要存储
  2. tanh层会创建候选状态 c ~ t \tilde{c}_t c~t

更新记忆单元

随后更新旧的细胞状态,将 c t − 1 c_{t-1} ct1更新为 c t c_t ct

在这里插入图片描述

首先将旧状态 c t − 1 c_{t-1} ct1 f t f_t ft相乘,遗忘掉由 f t f_t ft所确定的需要遗忘的信息,然后加上 i t ∗ c ~ t i_t*\tilde{c}_t itc~t,由此得到了新的记忆单元 c t c_t ct

输出门

结合输出门 o t o_t ot将内部状态的信息传递给外部状态 h t h_t ht。同样传递给外部状态的信息也是个过滤后的信息,首先sigmoid层确定记忆单元的那些信息被传递出去,然后,把细胞状态通过tanh层进行处理(得到[-1,1]的值)并将它和输出门的输出相乘,最终外部状态仅仅会得到输出门确定输出的那部分。

在这里插入图片描述

LSTM单元的pytorch实现

class LSTMCell(nn.Module):
    def __init__(self, input_size, hidden_size, cell_size, output_size):
        super().__init__()
        self.hidden_size = hidden_size # 隐含状态h的大小,也即LSTM单元隐含层神经元数量
        self.cell_size = cell_size # 记忆单元c的大小
        # 门
        self.gate = nn.Linear(input_size+hidden_size, cell_size)
        self.output = nn.Linear(hidden_size, output_size)
        self.sigmoid = nn.Sigmoid()
        self.tanh = nn.Tanh()
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, input, hidden, cell):
        # 连接输入x与h 
        combined = torch.cat((input, hidden), 1)
        # 遗忘门
        f_gate = self.sigmoid(self.gate(combined))
        # 输入门
        i_gate = self.sigmoid(self.gate(combined))
        z_state = self.tanh(self.gate(combined))
        # 输出门
        o_gate = self.sigmoid(self.gate(combined))
        # 更新记忆单元
        cell = torch.add(torch.mul(cell, f_gate), torch.mul(z_state, i_gate))
        # 更新隐藏状态h
        hidden = torch.mul(self.tanh(cell), o_gate)
        output = self.output(hidden)
        output = self.softmax(output)
        return output, hidden, cell
    
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

    def initCell(self):
        return torch.zeros(1, self.cell_size)

Pytorch中的LSTM

在这里插入图片描述

参数

  • input_size – 输入特征维数
  • hidden_size – 隐含状态h的维数
  • num_layers – RNN层的个数:(在竖直方向堆叠的多个相同个数单元的层数),默认为1
  • bias – 隐层状态是否带bias,默认为true
  • batch_first – 是否输入输出的第一维为batchsize
  • dropout – 是否在除最后一个RNN层外的RNN层后面加dropout层
  • bidirectional –是否是双向RNN,默认为false
  • proj_size – 如果>0, 则会使用相应投影大小的LSTM,默认值:0

其中比较重要的参数就是hidden_size与num_layers,hidden_size所代表的就是LSTM单元中神经元的个数。num_layers所代表的含义,就是depth的堆叠,也就是有几层的隐含层。

在这里插入图片描述

这张图是以MLP的形式展示LSTM的传播方式(不用管左边的符号,输出和隐状态其实是一样的),方便理解hidden_size这个参数。其实hidden_size在各个函数里含义都差不多,就是参数W的第一维(或最后一维)。那么对应前面的公式,hidden_size实际就是以这个size设置所有W的对应维。

在这里插入图片描述

这张图非常便于理解参数num_layers。实际上就是个depth堆叠,每个蓝色块都是LSTM单元。只不过第一层输入是 x t , h t − 1 ( 0 ) , c t − 1 ( 0 ) x_t, h_{t-1}^{(0)}, c_{t-1}^{(0)} xt,ht1(0),ct1(0),中间层输入是 h t ( k − 1 ) , h t − 1 ( k ) , c t − 1 ( k ) h_{t}^{(k-1)}, h_{t-1}^{(k)}, c_{t-1}^{(k)} ht(k1),ht1(k),ct1(k)

输入Inputs: input, (h_0, c_0)

  • input:当batch_first = False 时形状为(L,N,H_in),当 batch_first = True 则为(N, L, H_in​) ,包含批量样本的时间序列输入。该输入也可是一个可变换长度的时间序序列。
  • h_0:形状为(D∗num_layers, N, H_out),指的是包含每一个批量样本的初始隐含状态。如果模型未提供(h_0, c_0) ,默认为是全0矩阵。
    c_0:形状为(D∗num_layers, N, H_cell), 指的是包含每一个批量样本的初始记忆细胞状态。 如果模型未提供(h_0, c_0) ,默认为是全0矩阵。

输出Outputs: output, (h_n, c_n)

  • output: 当batch_first = False 形状为(L, N, D∗H_out​) ,当batch_first = True 则为 (N, L, D∗H_out​) ,包含LSTM最后一层每一个时间步长 的输出特征()。
  • h_n: 形状为(D∗num_layers, N, H_out​),包括每一个批量样本最后一个时间步的隐含状态。
  • c_n: 形状为(D∗num_layers, N, H_cell​),包括每一个批量样本最后一个时间步的记忆细胞状态。

参数解释

  • N = 批量大小
  • L = 序列长度
  • D = 2 如果模型参数bidirectional = 2,否则为1
  • H_in = 输入的特征大小(input_size)
  • H_cell = 隐含单元数量(hidden_size)
  • H_out = proj_size, 如果proj_size > 0, 否则的话 = 隐含单元数量(hidden_size)

BiLSTM

更新于2023年4月15日晚21点30分

写代码用到了BiLSTM,就想着顺便在这里记录一下,方便以后查阅:

RNN可以考虑上文的信息,那么如何将下文的信息也添加进去呢?这就是BiRNN要做的事情。
在这里插入图片描述
在这里插入图片描述
从上图可以看出,每层BiLSTM的输出隐藏层的维度都是输入隐藏层维度的两倍。

MultiheadAttention

Self Attention 计算过程

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Multihead Attention 计算过程

在这里插入图片描述

MultiheadAttention单元的pytorch实现

class Attention(nn.Module):
    '''
    Attention Module used to perform self-attention operation allowing the model to attend
    information from different representation subspaces on an input sequence of embeddings.
    The sequence of operations is as follows :-

    Input -> Query, Key, Value -> ReshapeHeads -> Query.TransposedKey -> Softmax -> Dropout
    -> AttentionScores.Value -> ReshapeHeadsBack -> Output

    Args:
        embed_dim: Dimension size of the hidden embedding
        heads: Number of parallel attention heads (Default=8)
        activation: Optional activation function to be applied to the input while transforming to query, key and value matrixes (Default=None)
        dropout: Dropout value for the layer on attention_scores (Default=0.1)

    Methods:
        _reshape_heads(inp) :- 
        Changes the input sequence embeddings to reduced dimension according to the number
        of attention heads to parallelize attention operation
        (batch_size, seq_len, embed_dim) -> (batch_size * heads, seq_len, reduced_dim)

        _reshape_heads_back(inp) :-
        Changes the reduced dimension due to parallel attention heads back to the original
        embedding size
        (batch_size * heads, seq_len, reduced_dim) -> (batch_size, seq_len, embed_dim)

        forward(inp) :-
        Performs the self-attention operation on the input sequence embedding.
        Returns the output of self-attention as well as atttention scores
        (batch_size, seq_len, embed_dim) -> (batch_size, seq_len, embed_dim), (batch_size * heads, seq_len, seq_len)

    Examples:
        >>> attention = Attention(embed_dim, heads, activation, dropout)
        >>> out, weights = attention(inp)
    '''
    def __init__(self, embed_dim, heads=8, activation=None, dropout=0.1):
        super(Attention, self).__init__()
        self.heads = heads
        self.embed_dim = embed_dim
        self.query = nn.Linear(embed_dim, embed_dim)
        self.key = nn.Linear(embed_dim, embed_dim)
        self.value = nn.Linear(embed_dim, embed_dim)
        self.softmax = nn.Softmax(dim=-1)
        if activation == 'relu':
            self.activation = nn.ReLU()
        elif activation == 'elu':
            self.activation = nn.ELU()
        else:
            self.activation = nn.Identity()
        self.dropout = nn.Dropout(dropout)
    
    def forward(self, inp):
        # inp: (batch_size, data_aug, cha_tim_dim, embed_dim)
        batch_size, data_aug, cha_tim_dim, embed_dim = inp.size()
        assert embed_dim == self.embed_dim

        query = self.activation(self.query(inp))
        key   = self.activation(self.key(inp))
        value = self.activation(self.value(inp))

        # output of _reshape_heads(): (batch_size * heads, data_aug, cha_tim_dim, reduced_dim) | reduced_dim = embed_dim // heads
        query = self._reshape_heads(query)
        key   = self._reshape_heads(key)
        value = self._reshape_heads(value)

        # attention_scores: (batch_size * heads, data_aug, cha_tim_dim, cha_tim_dim) | Softmaxed along the last dimension
        attention_scores = self.softmax(torch.matmul(query, key.transpose(2, 3)))

        # out: (batch_size * heads, data_aug, cha_tim_dim, reduced_dim)
        out = torch.matmul(self.dropout(attention_scores), value)

        # output of _reshape_heads_back(): (batch_size, data_aug, cha_tim_dim, embed_dim)
        out = self._reshape_heads_back(out)

        return out, attention_scores

    def _reshape_heads(self, inp):
        # inp: (batch_size, data_aug, cha_tim_dim, embed_dim)
        batch_size, data_aug, cha_tim_dim, embed_dim = inp.size()

        reduced_dim = self.embed_dim // self.heads
        assert reduced_dim * self.heads == self.embed_dim
        out = inp.reshape(batch_size, data_aug, cha_tim_dim, self.heads, reduced_dim)
        out = out.permute(0, 3, 1, 2, 4)
        out = out.reshape(-1, data_aug, cha_tim_dim, reduced_dim)

        # out: (batch_size * heads, data_aug, cha_tim_dim, reduced_dim)
        return out

Pytorch中的MultiheadAttention

在这里插入图片描述

在这里插入图片描述

输入的矩阵维度

在这里插入图片描述

参考资料

LSTM详解

Pytorch LSTM模型 参数详解

[译] 理解 LSTM 网络

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html?highlight=attention#torch.nn.MultiheadAttention

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值