目录
推荐课程:07.处理多维特征的输入_哔哩哔哩_bilibili
1.概述
一个八维数据集:
数据集,每一行称为一个样本,每一列称为一个特征。
回归模型的更改:n维的输入向量x和n维的权重w的转置作内积 + 广播处理的偏移量b,得到的1维的预测值,再使用logistic函数进行映射。
使用self.linear = torch.nn.Linear(n,m)对输入维度和输出维度进行调整。
如下图所示,self.linear = torch.nn.Linear(8,1)可以使8个维度的输入张量映射到1个维度的输出张量。
可以从n维的输入直接映射到1维的输出,也可以分多层一步一步的进行映射,例如:从8维映射到6维,再从6维映射到4维,再从4维映射到2维,再从2维映射到2维。
一般来说,映射的层数越多,神经元越多,学习能力越强。但是并不是说学习能力越强越好,学习能力过强,可能会把输入样本中噪声的规律也学到,造成模型和数据之间的过拟合。
2. 处理多维度特征的输入
案例:使用神经网络处理8维特征输入:
三层映射:从8维映射到6维,再从6维映射到4维,再从4维映射到1维。
代码实现:
import torch
#用于在大型、多维数组上执行数值运算
import numpy as np
import matplotlib.pyplot as plt
#…1.准备数据………………………………………………………………………………………………………………………………………#
xy = np.loadtxt('dataset/diabetes.csv', delimiter=',', dtype=np.float32)
# 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
x_data = torch.from_numpy(xy[:, :-1])
# [-1] 最后得到的是个矩阵
y_data = torch.from_numpy(xy[:, [-1]])
#…2.设计模型………………………………………………………………………………………………………………………………………#
# 继承torch.nn.Module,定义自己的计算模块,neural network
class Model(torch.nn.Module):
# 构造函数
def __init__(self):
# 调用父类构造
super(Model, self).__init__()
# 从8维降到6维再降到4维再降到1维
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
# 前馈函数
def forward(self, x):
# 调用self.sigmoid,并linear
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
#……3.构造模型、损失函数和优化器………………………………………………………………………………………………………#
# 实例化自定义模型,返回做logistic变化(也叫sigmoid)的预测值
model = Model()
# 实例化损失函数,返回损失值
criterion = torch.nn.BCELoss(size_average=True)
# 实例化优化器,优化权重w
# model.parameters(),取出模型中的参数,lr为学习率
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
#……4.训练周期……………………………………………………………………………………………………………………………………………#
for epoch in range(1000):
# 获得预测值
y_pred = model(x_data)
# 获得损失值
loss = criterion(y_pred, y_data)
# 不会产生计算图,因为__str()__
print(epoch, loss.item())
# 梯度归零
optimizer.zero_grad()
# 反向传播
loss.backward()
# 更新权重w
optimizer.step()
optimizer.step()