数学-梯度

方向导数

如果函数的增量,与两点距离的比例存在,则称此为在P点沿着L方向的导数 ∂ f ∂ l = lim ⁡ ρ → 0 f ( x + Δ x , y + Δ y ) − f ( x , y ) ρ \frac{\partial f}{\partial l}=\lim _{\rho \rightarrow 0} \frac{f(x+\Delta x, y+\Delta y)-f(x, y)}{\rho} lf=limρ0ρf(x+Δx,y+Δy)f(x,y)
定理:如果函数z=f(x,y)在点P(x,y)是可微分的,那么在该点沿任意方向L的方向导数都存在。
∂ f ∂ l = ∂ f ∂ x cos ⁡ φ + ∂ f ∂ y sin ⁡ φ \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x} \cos \varphi+\frac{\partial f}{\partial y} \sin \varphi lf=xfcosφ+yfsinφ
其中, φ \varphi φ为X轴到L的角度。
在这里插入图片描述

梯度

函数:
z=f(x,y)在平面区域内具有连续的一阶偏导数,对于其中每一个点P(x,y)都有向量 ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ \frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j} xfi +yfj ,则成为函数在点P的梯度。
∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ grad ⁡ ( x , y ) = ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ \frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}\operatorname{grad}(x, y)=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j} xfi +yfj grad(x,y)=xfi +yfj

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1100dp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值