方向导数
如果函数的增量,与两点距离的比例存在,则称此为在P点沿着L方向的导数
∂
f
∂
l
=
lim
ρ
→
0
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
ρ
\frac{\partial f}{\partial l}=\lim _{\rho \rightarrow 0} \frac{f(x+\Delta x, y+\Delta y)-f(x, y)}{\rho}
∂l∂f=limρ→0ρf(x+Δx,y+Δy)−f(x,y)。
定理:如果函数z=f(x,y)在点P(x,y)是可微分的,那么在该点沿任意方向L的方向导数都存在。
∂
f
∂
l
=
∂
f
∂
x
cos
φ
+
∂
f
∂
y
sin
φ
\frac{\partial f}{\partial l}=\frac{\partial f}{\partial x} \cos \varphi+\frac{\partial f}{\partial y} \sin \varphi
∂l∂f=∂x∂fcosφ+∂y∂fsinφ
其中,
φ
\varphi
φ为X轴到L的角度。
梯度
函数:
z=f(x,y)在平面区域内具有连续的一阶偏导数,对于其中每一个点P(x,y)都有向量
∂
f
∂
x
i
⃗
+
∂
f
∂
y
j
⃗
\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}
∂x∂fi+∂y∂fj,则成为函数在点P的梯度。
∂
f
∂
x
i
⃗
+
∂
f
∂
y
j
⃗
grad
(
x
,
y
)
=
∂
f
∂
x
i
⃗
+
∂
f
∂
y
j
⃗
\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}\operatorname{grad}(x, y)=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}
∂x∂fi+∂y∂fjgrad(x,y)=∂x∂fi+∂y∂fj