问题描述
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:**oo***oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求:
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。每行的长度<1000
输出格式
一个整数,表示最小操作步数。
样例输入1
**********
o****o****
o****o****
样例输出1
5
样例输入2
*o**o***o***
*o***o**o***
*o***o**o***
样例输出2
1
这道题还是比较简单的,就不解释了,主要就是把不同的标记为1,然后看1与1之间的长度即可
#include <stdio.h>#include <string.h>#include <algorithm>using namespace std;char a[2000],b[2000];int hash[2000],i;int main(){ scanf("%s%s",a,b); int len = strlen(a); for(i = 0; i<len; i++) if(a[i] == b[i]) hash[i] = 0; else hash[i] = 1; int ans = 0,flag = -1; for(i = 0; i<len; i++) { if(hash[i]) { if(flag == -1) flag = i; else { ans+=i-flag; flag = -1; } } } printf("%d\n",ans); return 0;}