Problem Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
Output
For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
Sample Input
3 3 31 2 31 2 31 2 331410
Sample Output
Case 1:NOYESNO
题意:分别有a,b,c三个数组,给出一个数,看这个数能不能再a,b,c,里面分别找出一个数求和得到
思路:还真是想了集中方法,一开始也想到了二分,但是二分也还是有很多技巧的,不同的二分有不同的时间消耗。。。
#include <stdio.h>#include <algorithm>#include <string.h>using namespace std;__int64 a[505],b[505],c[505],la,lb,lc;__int64 sum[505*505],len;int bin(__int64 x){ __int64 l = 0,r = len-1; while(l<=r) { __int64 mid = (l+r)>>1; if(sum[mid] == x) return 1; else if(sum[mid]>x) r = mid-1; else l = mid+1; } return 0;}int main(){ __int64 m,s,cas = 1,i,j,k; while(~scanf("%I64d%I64d%I64d",&la,&lb,&lc)) { for(i = 0; i<la; i++) scanf("%I64d",&a[i]); for(i = 0; i<lb; i++) scanf("%I64d",&b[i]); for(i = 0; i<lc; i++) scanf("%I64d",&c[i]); sort(c,c+lc); len = 0; for(i = 0; i<la; i++) { for(j = 0; j<lb; j++) { sum[len++] = a[i]+b[j]; } } sort(sum,sum+len); len = unique(sum,sum+len)-sum; scanf("%I64d",&m); printf("Case %I64d:\n",cas++); while(m--) { scanf("%I64d",&s); if(s>sum[len-1]+c[lc-1] || s<sum[0]+c[0]) { printf("NO\n"); continue; } __int64 flag = 0; for(i = 0;i<lc;i++) { int kk = s-c[i]; if(bin(kk)) { flag = 1; break; } } if(flag) printf("YES\n"); else printf("NO\n"); } } return 0;}