属性图社区搜索--QD-GCN(Query-Driven Graph Convolutional Networks for Attributed Community Search)

本文介绍了ACS问题的传统方法局限性,着重探讨了QD-GCN方法,设计了四部分学习组件解决结构和属性关联问题。QD-GCN通过GCN改进,同时考虑社区结构和节点属性,使用监督学习优化模型,有效应用于社区搜索任务。实验对比展示了QD-GCN的优势和实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.什么是ACS(attributed community search)
  • 对于给定的查询节点 (节点+该节点的属性),找出其所属社区
    在这里插入图片描述
2.ACS问题–传统方法
  • 传统方法
    传统方法分两步执行
    1)structural matching:找出查询节点的候选社区结构
    2)attribute filtering:优化属性函数,来缩小或筛选第一步选出的社区
  • 缺点
    1)将结构和属性分开处理,忽略结构和属性关联,现实世界的社区结构和属性是有关系的
    2)传统社区搜索基于预定义的子图(先根据如下标准:k-core,k-truss,k-clique,k-edge connected component选出子图),但是现实世界中的图不能很好的严格满足这些标准
    3)属性独立处理(例如GCN和GNN是相似的,传统的方式认为是完全不相关的两个词)
3.ACS问题–本文提出的方法(QD-GCN)
  • QD-GCN方法介绍
    design four learning components for different learning tasks
    1)graph encoder
    学习整张图的结构和属性特征(both structure and attribute of entire graph),input图的邻接矩阵A和特征矩阵F,产生graph embedding
    2)structure encoder
    学习与特定查询相关的局部结构特征(query-specific local structural features),为查询节点提供接口,学习查询节点局部特征,产生查询节点的映射 query-specific structural embedding
    3)attribute encoder
    学习查询节点相关的属性特征,为查询属性提供接口,产生query-specific attribute embedding
    并基于属性结构二分图考虑属性的相似性。

4)feature fusion
融合上述三个编码器的输出,并

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值