1.什么是ACS(attributed community search)
- 对于给定的查询节点 (节点+该节点的属性),找出其所属社区
2.ACS问题–传统方法
- 传统方法
传统方法分两步执行
1)structural matching:找出查询节点的候选社区结构
2)attribute filtering:优化属性函数,来缩小或筛选第一步选出的社区 - 缺点
1)将结构和属性分开处理,忽略结构和属性关联,现实世界的社区结构和属性是有关系的
2)传统社区搜索基于预定义的子图(先根据如下标准:k-core,k-truss,k-clique,k-edge connected component选出子图),但是现实世界中的图不能很好的严格满足这些标准
3)属性独立处理(例如GCN和GNN是相似的,传统的方式认为是完全不相关的两个词)
3.ACS问题–本文提出的方法(QD-GCN)
- QD-GCN方法介绍
design four learning components for different learning tasks
1)graph encoder
学习整张图的结构和属性特征(both structure and attribute of entire graph),input图的邻接矩阵A和特征矩阵F,产生graph embedding
2)structure encoder
学习与特定查询相关的局部结构特征(query-specific local structural features),为查询节点提供接口,学习查询节点局部特征,产生查询节点的映射 query-specific structural embedding
3)attribute encoder
学习查询节点相关的属性特征,为查询属性提供接口,产生query-specific attribute embedding
并基于属性结构二分图考虑属性的相似性。
4)feature fusion
融合上述三个编码器的输出,并