【机器学习】聚类分析(二)——从极大似然估计到EM算法

本文详述了EM算法的原理,从极大似然估计出发,解释了含有隐变量的概率模型参数估计的困难,并通过Jensen不等式推导了EM算法的迭代过程。EM算法分为E步和M步,E步估算隐变量的后验概率,M步最大化下界以更新参数。文章指出,EM算法在每次迭代中确保下界增加,从而保证收敛性。该算法在聚类问题中有着重要应用,为高斯混合模型的聚类提供了解决方案。
摘要由CSDN通过智能技术生成
                       

前言:本文主要把EM算法的内容及其简单推导交待清楚,为后面实现高斯混合模型的聚类算法做一个铺垫,因此本文不会出现代码。文中会出现大量的数学定义、公式及原理等,篇幅有限,加上能力有限,我不可能把所有的定义和公式都罗列一遍,作为博文也没必要这样做,如果这样做,未免过于枯燥生涩,还不如直接去写论文算了。只是力求简明扼要把这个算法描述清楚,但又不能过于简单,否则就无法理解其中的精髓。EM算法,又称期望极大算法(expectation maximization algorithm),是含有隐变量的概率模型参数的极大似然估计法。作为机器学习十大算法之一,它的重要性不言而喻。

一、问题引入
首先还是讲讲极大似然估计。相信大部分本科数理统计课本已经把极大似然估计的概念介绍得非常清楚,这里作一个简单回顾。举一个例子,假设有一枚硬币,其出现正面的概率是θ(θ是客观存在的参数,只是我们不知道是多少),记事件y为“抛这枚硬币”,1表示正面,0表示反面。那么y服从伯努利分布:
这里写图片描述
我们不知道参数θ是多少,所以我们要进行多次试验得到多个样本值来估计参数θ。其似然函数为:
这里写图片描述
θ就是似然函数最大的时候所取的值:
这里写图片描述
一般来说,求L(θ)的最大值就是令其对θ的偏导数等于0。由于似然函数是多个分布函数的乘积,直接求导会相对困难,因此取对数似然函数把乘积化为求和计算,大大降低运算量。
在上述的概率模型中,

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值