【机器学习】聚类分析(三)——高斯混合模型

本文介绍了高斯混合模型(GMM)作为聚类方法的优势,以解决K均值算法在某些场景下的不足。通过EM算法求解GMM参数,包括E-step和M-step的详细过程。此外,还展示了Matlab代码实现GMM聚类,并讨论了似然下界的收敛情况。文章强调了深入学习聚类方法对于理解该领域的价值。
摘要由CSDN通过智能技术生成
                       

一、问题引入
我们已经使用过k-means算法解决聚类问题。这个算法的突出优点是简单易用,计算量也不多。然而,往往过于简单也是一个缺点。假设聚类可以表示为单个点往往会过于粗糙。举一个例子,如下图所示:
这里写图片描述
这个例子中数据位于同心圆。在这种情况下,标准的K均值由于两个圆的均值位置相同,无法把数据划分成簇(所以上面有一个绿点不知道该往哪跑,因为它没有簇)。因此,以距离模型为聚类标准的方法不一定都能成功适用。为了解决这些缺点,我们介绍一种用统计混合模型进行聚类的方法——高斯混合模型(Gaussian Mixture Model, GMM)。这种聚类方法得到的是每个样本点属于各个类的概率,而不是判定它完全属于一个类,所以有时也会被称为软聚类。

二、问题分析
1.我们使用EM算法来求解高斯混合模型的相关参数。算法流程如下:
Repeat until convergence {
    E-step: For each i, j, set 
这里写图片描述
    M-step: Update parameters
    这里写图片描述
}
其中这里写图片描述是隐含变量z服从的先验分布,其余两个参数是混合高斯分布的均值(μ)和协方差(Σ)。这里写图片描述是隐含变量z属于类别j的后验概率,其可以根据贝叶斯公式计算得到:
这里写图片描述

2.EM算法求解GMM的简单推导
下面我们只对M-step作简单推导。在M-step中,我们需要最大化一个关于参数Φ,μ,Σ的式子:
这里写图片描述
很自然地会想到对逐个参数求偏导数。先对μ求偏导数,得:
这里写图片描述
令其等于0,得到:
这里写图片描述
其次,对Φ求偏导数,可以先把和Φ无关的项去掉,简化求导计算:
这里写图片描述
因为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值