小知识
矩阵变换:左行右列
矩阵 × \times ×向量:矩阵列的线性组合
m a t r i x × c o l u m n = c o l u m n matrix \times column = column matrix×column=column
向量 × \times × 矩阵:矩阵行的线性组合
r o w × m a t r i x = r o w row \times matrix = row row×matrix=row
矩阵乘法
for A m × n × B n × p A_{m\times n} \times B_{n\times p} Am×n×Bn×p 得出结果 C m × p C_{m\times p} Cm×p
1.常规方法
通过 A A A 的行与 B B B 的列对应相乘得到 C C C 中的各个元素。
2.列方法
A [ b 1 , b 2 , . . . , b p ] = [ c 1 , c 2 , . . . , c p ] A[b_1,b_2,...,b_p]=[c_1,c_2,...,c_p] A[b1,b2,...,bp]=[c1,c2,...,cp]
c 1 = A × b 1 c_1=A\times b_1 c1=A×b1
c 2 = A × b 2 c_2=A\times b_2 c2=A×b2
…
c p = A × b p c_p=A\times b_p cp=A×bp
⇒ \Rightarrow ⇒ 列向量 c i c_i ci是 A A A中各列向量 [ a 1 , a 2 , . . . , a n ] [a_1,a_2,...,a_n] [a1