矩阵论——矩阵乘法

本文详细介绍了矩阵乘法的不同方法,包括常规方法、列方法、行方法、列乘行以及分块乘法,并探讨了矩阵乘法后的行空间和列空间概念,揭示了它们所表示的线性组合特性。
摘要由CSDN通过智能技术生成

小知识

矩阵变换:左行右列
矩阵 × \times ×向量:矩阵列的线性组合
m a t r i x × c o l u m n = c o l u m n matrix \times column = column matrix×column=column
向量 × \times × 矩阵:矩阵行的线性组合
r o w × m a t r i x = r o w row \times matrix = row row×matrix=row

矩阵乘法

for A m × n × B n × p A_{m\times n} \times B_{n\times p} Am×n×Bn×p 得出结果 C m × p C_{m\times p} Cm×p

1.常规方法

通过 A A A 的行与 B B B 的列对应相乘得到 C C C 中的各个元素。

2.列方法

A [ b 1 , b 2 , . . . , b p ] = [ c 1 , c 2 , . . . , c p ] A[b_1,b_2,...,b_p]=[c_1,c_2,...,c_p] A[b1,b2,...,bp]=[c1,c2,...,cp]
c 1 = A × b 1 c_1=A\times b_1 c1=A×b1
c 2 = A × b 2 c_2=A\times b_2 c2=A×b2

c p = A × b p c_p=A\times b_p cp=A×bp
⇒ \Rightarrow 列向量 c i c_i ci A A A中各列向量 [ a 1 , a 2 , . . . , a n ] [a_1,a_2,...,a_n] [a1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值