如何根据自相关(ACF)图和偏自相关(PACF)图选择ARIMA模型的p、q值

本文详细介绍了如何根据自相关(ACF)图和偏自相关(PACF)图选择ARIMA模型的参数p、q值。在PACF截尾且ACF拖尾时,适合确定AR模型的p值;反之,若ACF截尾,PACF拖尾,则适合确定MA模型的q值。通过观察ACF和PACF图的拖尾和截尾情况,结合模型类型判断,可以确定ARIMA模型的阶数。文中提供了AR、MA和ARMA模型的示例图进行说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天有朋友在之前👉这篇文章 👈的时候在下面评论询问如何通过自相关(ACF)和偏自相关(PACF)图找到p、q值?这里掌柜就详细阐述一下。

PS:假设你已经知道AR、MA、以及ARIMA模型是什么。
PPS: 假设这里也已经做了差分,时间序列已经平稳。
PPPS:如果不想看前面的解释,那么请直接跳到最后看确定方法。如果你觉得本文有理解错误的地方,请指出来,谢谢。

  • 首先,ACF图和PACF图分别指的是什么?

    • ACF图:

      • 需要先了解一个概念:Autocorrelation Function (ACF)自相关函数,指任意时间 t(t=1,2,3…n)的 序列值Xt 与其自身的滞后(这里取滞后一阶,即lag=1)值Xt-1之间的线性关系。
      • 这里有个简单的示例,可以更形象的解释Xt与Xt-1的变化:
        在这里插入图片描述

      那么ACF图就是指👉以

评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值