这两天有朋友在之前👉这篇文章 👈的时候在下面评论询问如何通过自相关(ACF)和偏自相关(PACF)图找到p、q值?这里掌柜就详细阐述一下。
PS:假设你已经知道AR、MA、以及ARIMA模型是什么。
PPS: 假设这里也已经做了差分,时间序列已经平稳。
PPPS:如果不想看前面的解释,那么请直接跳到最后看确定方法。如果你觉得本文有理解错误的地方,请指出来,谢谢。
-
首先,ACF图和PACF图分别指的是什么?
-
ACF图:
- 需要先了解一个概念:Autocorrelation Function (ACF)自相关函数,指任意时间 t(t=1,2,3…n)的 序列值Xt 与其自身的滞后(这里取滞后一阶,即lag=1)值Xt-1之间的线性关系。
- 这里有个简单的示例,可以更形象的解释Xt与Xt-1的变化:

那么ACF图就是指👉以
-

本文详细介绍了如何根据自相关(ACF)图和偏自相关(PACF)图选择ARIMA模型的参数p、q值。在PACF截尾且ACF拖尾时,适合确定AR模型的p值;反之,若ACF截尾,PACF拖尾,则适合确定MA模型的q值。通过观察ACF和PACF图的拖尾和截尾情况,结合模型类型判断,可以确定ARIMA模型的阶数。文中提供了AR、MA和ARMA模型的示例图进行说明。
最低0.47元/天 解锁文章
2689

被折叠的 条评论
为什么被折叠?



