函数列与函数项级数——(二)一致收敛函数列与函数项级数的性质

定理8(极限交换定理)

设函数列\{f_n\}(a,x_0)\cup (x_0,b)上一致收敛于f(x),且对每个n,\lim_{x\to x_0}f_n(x)=a_n,\lim_{n\to \infty}a_n\lim_{x\to x_0}f(x)均存在且相等,即\lim_{n\to \infty}(\lim_{x\to x_0}f(x))=\lim_{x\to x_0}(\lim_{n\to \infty}f_n(x)).

这个定理指出:在一致收敛的条件下,\{f_n(x)\}中两个独立变量x与n,在分别求极限时其求极限的顺序可以交换,即\lim_{x\to x_0}\lim_{n\to \infty}f_n(x)=\lim_{n\to \infty}\lim_{x\to x_0}f_n(x).

类似地,若f_n(x)在(a,b)上一致收敛且\lim_{x\to a^+}f_n(x)存在,可推得\lim_{x\to a^+}\lim_{n\to \infty}f_n(x)=\lim_{n\to \infty}\lim_{x\to a^+}f_n(x);f_n(x)在(a,b)上一致收敛和\lim_{x\to b^-}\lim_{n\to \infty}f_n(x)=\lim_{n\to \infty}\lim_{x\to b^-}f_n(x).

定理9(连续性)

若函数列\{f_n\}在区间I上一致收敛,且每一项都连续,则其极限函数f在I上也连续。

逆否命题:若各项为连续函数的函数列在区间I上其极限函数不连续,则此函数列在区间I上不一致收敛。

推论:若连续函数列\{f_n\}在区间I上内闭一致收敛于f,则f 在I上连续。

定理10(可积性)

若函数列\{f_n\}在区间[a,b]上一致收敛,且每一项都连续,则\int _{a}^{b}\lim_{n\to \infty}f_n(x)dx=\lim_{n\to \infty}\int _{a}^{b}f_n(x)dx.

这个定理指出:在一致收敛的条件下,极限运算与积分运算的顺序可以交换。

定理11(可微性)

\{f_n\}为定义在[a,b]上的函数列,若x_0\in [a,b]\{f_n\}的收敛点,\{f_n\}的每一项在[a,b]上有连续的导数,且\{f'_n\}在[a,b]上一致收敛,则\frac{d}{dx}(\lim_{n\to \infty}f_n(x))=\lim_{n\to \infty}\frac{d}{dx}f_n(x).

推论:设函数列\{f_n\}定义在区间I上,若x_0\in I\{f_n\}的收敛点,且\{f'_n\}在I上内闭一致收敛,则f在I上可导,且f'(x)=\lim_{n\to \infty}f'_n(x).

定理12(连续性)

若函数项级数\sum u_n(x)在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续。

这个定理指出:在一致收敛条件下,(无限项)求和运算与求极限运算可以交换顺序,即\sum (\lim_{x\to x_0}u_n(x))=\lim(\sum u_n(x)).

定理13(逐项求积)

若函数项级数\sum u_n(x)在区间[a,b]上一致收敛,且每一项都连续,则\sum \int_{a}^{b}u_n(x)dx=\int_{a}^{b}\sum u_n(x)dx.

定理14(逐项求导)

若函数项级数\sum u_n(x)在区间[a,b]上每一项都有连续的导函数,x_0\in [a,b]\sum u_n(x)的收敛点,且\sum u'_n(x)在区间[a,b]上一致收敛,则\sum (\frac{d}{dx}u_n(x))=\frac{d}{dx}(\sum u_n(x)).

  • 16
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值