欧几里得空间——度量矩阵

设V一个n维欧几里得空间,在V中取一组基\varepsilon _1,\varepsilon _2,...,\varepsilon _n,对V中任意两个向量\alpha =x_1\varepsilon _1+x_2\varepsilon _2+...+x_n\varepsilon _n,\beta =y_1\varepsilon _1+y_2\varepsilon _2+...+y_n\varepsilon _n,由内积的性质得(\alpha ,\beta )=(x_1\varepsilon _1+x_2\varepsilon _2+...+x_n\varepsilon _n,y_1\varepsilon _1+y_2\varepsilon _2+...+y_n\varepsilon _n)=\sum_{i=1}^{n}\sum_{j=1}^{n}(\varepsilon _i,\varepsilon _j)x_iy_j.a_{ij}=(\varepsilon _i,\varepsilon _j)(i,j=1,2,...,n),显然a_{ij}=a_{ji}.于是(\alpha ,\beta )=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_iy_j.利用矩阵,(\alpha ,\beta )还可以写成(\alpha ,\beta )=X'AY,其中X=\left(\begin{matrix}x_1\\ x_2\\ \vdots \\ x_n \end{matrix} \right ) Y=\left(\begin{matrix}y_1\\ y_2\\ \vdots \\ y_n \end{matrix} \right )分别是\alpha ,\beta的坐标,而矩阵A=(a_{ij})_{nn}称为基\varepsilon _1,\varepsilon _2,...,\varepsilon _n度量矩阵,因而度量矩阵完全确定了内积,即(\alpha ,\beta )=X'AY.

不同基的度量矩阵是合同的

\eta _1,\eta _2,...,\eta _n是空间V的另外一组基,而由\varepsilon _1,\varepsilon _2,...,\varepsilon _n\eta _1,\eta _2,...,\eta _n的过渡矩阵为C,即(\eta _1,\eta _2,...,\eta _n)=(\varepsilon _1,\varepsilon _2,...,\varepsilon _n)C.于是不难看出,基\eta _1,\eta _2,...,\eta _n的度量矩阵B=(b_{ij})=(\eta _i,\eta _j)=C'AC.

度量矩阵是正定的

对于非零向量\alphaX\neq \left(\begin{matrix} 0\\ 0\\ \vdots \\ 0\end{matrix} \right ),(\alpha ,\alpha )=X'AX>0,

反之,给定一个n级正定矩阵A及n维实线性空间V的一组基\varepsilon _1,\varepsilon _2,...,\varepsilon _n可以规定V上内积,使它成为欧几里得空间,并且基\varepsilon _1,\varepsilon _2,...,\varepsilon _n的度量矩阵为A.

欧几里得空间的子空间在所定义的内积之下仍是一个欧几里得空间。

欧几里得空间还简称欧氏空间。

### 如何修改空间权重矩阵的定义方法 在地理加权回归(GWR)和更广泛的空间数据分析中,空间权重矩阵的定义方式可以通过调整其核心原则来实现灵活变化。以下是几种常见的修改方向及其具体实施: #### 1. 距离度量的选择 传统上,欧几里得距离是最常用的距离度量标准之一。然而,在某些情况下,可以考虑其他形式的距离度量,例如曼哈顿距离或大圆距离(适用于球面上的数据)。这些替代方案能够更好地反映实际场景中的空间关系。 对于基于 k 近邻的方法,还可以通过改变邻居数量 \(k\) 来动态调整权重分布[^2]。这种方法允许更加精细地控制局部区域内的交互强度。 #### 2. 衰减函数的形式 除了简单的指数衰减外,还有多种可能的数学表达式可用于表示随距离增长而减弱的关系。例如高斯核函数、双曲正切函数或者多项式型函数都可以作为备选方案引入到模型当中。每种不同的函数都会带来独特的特性曲线形状从而影响最终的结果解释力。 另外值得注意的是,当采用固定带宽时可能会忽略掉不同地点间可能存在差异化的最佳尺度参数;为此可尝试自适应带宽策略——让每个观测点拥有独立优化后的半径范围以适配各自周围的密度特征[^3]。 #### 3. 结合多源信息构建复合型权重体系 单一维度上的考量往往难以全面捕捉复杂的现实状况。因此建议综合运用诸如行政边界划分、交通网络连接程度等多种因素共同作用于同一个框架之下形成更为丰富的表征模式[^1]。这样不仅可以增强预测精度还能提供更多关于潜在机制背后运作规律的理解视角。 ```python import numpy as np from scipy.spatial.distance import cdist def custom_weight_matrix(coords, method='euclidean', decay_func=None, **kwargs): """ 构建定制化空间权重矩阵 参数: coords (array-like): 坐标列表 [(x1,y1),...,(xn,yn)] method (str): 计算距离的方式 ('euclidean','manhattan' etc.) decay_func (function): 自定义衰减函数,默认无 kwargs: 其他传递给decay_func的关键字参数 返回值: W (ndarray): n*n大小的空间权重矩阵 """ dists = cdist(coords, coords, metric=method) if callable(decay_func): W = decay_func(dists, **kwargs) else: # 默认简单倒数平方根法模拟基本衰减效应 W = 1 / np.sqrt(1 + dists**2) return W ``` 上述代码片段展示了如何创建一个支持多样化选项配置的功能模块用于生成特定需求下的新型空间关联结构表示形式。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值