Quantization(一)定长公式推导

1.简要介绍

对于PCM量化在平稳随机中的应用具有无限振幅区间的过程,我们选择了量化步长为给定量化器大小K的最小值失真。这个概念的自然延伸是在给定K的时候,最小化关于标量量化器的所有参数的失真优化变量。参数变量为K-1个边界ui,K个映射值 s i ′ s_i^{'} si 0 ≤ i < K 0\le i \lt K 0i<K。得到的量化器称为pdf优化标量固定长度编码的量化器。
通常,为量子化定义一个失真度量是否恰当的标准,比如量化的统计错误。我们通过选择一个恰当的边界值 u i u_i ui与映射值 s i ′ s_i^{'} si可以使得损失最小。如果我们定义失真 D D D f ( ϵ ) f(\epsilon) f(ϵ)的期望值,其中f是某个函数(可微), ϵ \epsilon ϵ是量化误差,输入的概率密度函数为 p ( x ) p(x) p(x)。此时,我们定义distortion D:
D = E [ f ( s i n − s o u t ) ] = ∑ i = 1 N ∫ − u i u i + 1 f ( s − s i ′ )   p ( x )   d x \begin{aligned} D & = E[f(s_{in}-s_{out})] \\ & = \sum_{i=1}^{N} \int_{-u_i}^{u_{i+1}} f(s-s_i^{'})\ p(x)\ dx \\ \end{aligned} D=E[f(sinsout)]=i=1Nuiui+1f(ssi) p(x) dx
x N + 1 = ∞ , x 1 = − ∞ x_{N+1}=\infty,x_1=-\infty xN+1=x1=

2.证明

如果我们想在N固定的情况下最小化D,我们需要D分别对 u i u_i ui s i ′ s_i^{'} si求偏导:
∂ D ∂ u i = f ( u i − s i − 1 ′ ) p ( x ) − f ( u i − s i ′ ) p ( u i ) = 0 i = 2 , . . . , N         ( 1 ) \begin{aligned} \frac{\partial D}{\partial u_i}=f(u_i -s_{i-1}^{'})p(x)-f(u_i-s_i^{'})p(u_i)=0 \\ i=2,...,N\ \ \ \ \ \ \ (1) \end{aligned} uiD=f(uisi1)p(x)f(uisi)p(ui)=0i=2,...,N       (1)
∂ D ∂ s i ′ = − ∫ u i u i + 1 f ′ ( s − s i ′ )   p ( x )   d x = 0 i = 1 , . . . , N         ( 2 ) \begin{aligned} \frac{\partial D}{\partial s_i^{'}} = -\int_{u_i}^{u_{i+1}} f^{'}(s-s_i^{'})\ p(x)\ dx=0 \\ i=1,...,N\ \ \ \ \ \ \ (2) \end{aligned} siD=uiui+1f(ssi) p(x) dx=0i=1,...,N       (2)
( 1 ) b e c o m e s ( f o r   p ( x i ) ≠ 0 ) f ( u i − s i − 1 ′ ) = f ( u i − s i ′ ) i = 2 , . . . , N         ( 3 ) \begin{aligned} (1)becomes (for\ p(x_i) \neq 0) \\ & f(u_i -s_{i-1}^{'})=f(u_i-s_i^{'}) & &i=2,...,N\ \ \ \ \ \ \ (3) \end{aligned} (1)becomes(for p(xi)=0)f(uisi1)=f(uisi)i=2,...,N       (3)

( 2 ) b e c o m e s ∫ u i u i + 1 f ′ ( s − s i ′ )   p ( x )   d x = 0 i = 2 , . . . , N         ( 4 ) \begin{aligned} (2)becomes \\ &&&&&&&&& \int_{u_i}^{u_{i+1}} f^{'}(s-s_i^{'})\ p(x)\ dx=0 & &i=2,...,N\ \ \ \ \ \ \ (4) \end{aligned} (2)becomesuiui+1f(ssi) p(x) dx=0i=2,...,N       (4)

我们可以在详细的计算以下:

2.1 求 s i ′ s_i^{'} si

D = E [ f ( s i n − s o u t ) ] = ∑ i = 1 N ∫ − u i u i + 1 f ( s − s i ′ )   p ( x )   d x \begin{aligned} D & = E[f(s_{in}-s_{out})] \\ & = \sum_{i=1}^{N} \int_{-u_i}^{u_{i+1}} f(s-s_i^{'})\ p(x)\ dx \\ \end{aligned} D=E[f(sinsout)]=i=1Nuiui+1f(ssi) p(x) dx

函数 f ( s ) f(s) f(s)我们采用MSE。
方法一:
E { ( S − s i ′ ) 2 } = E { ( S − E ( s ) + E ( s ) − s i ′ ) 2 } = E { ( S − E ( s ) ) ) 2 } + ( E ( s ) − s i ′ ) 2 ≥ E { ( S − E ( s ) ) ) 2 } \begin{aligned} & E \{ (S-s_i{'})^2 \} \\ & =E\{(S-E(s)+E(s)-s_i{'})^2\} \\ & =E\{(S-E(s)))^2\}+(E(s)-s_i{'})^2 \\ & \ge E\{(S-E(s)))^2\} \end{aligned} E{(Ssi)2}=E{(SE(s)+E(s)si)2}=E{(SE(s)))2}+(E(s)si)2E{(SE(s)))2}
当等号成立时, E { S } = = s i ′ E\{S\} == s_i^{'} E{S}==si,即:
s i ′ = E { S } = ∫ u i u i + 1 s f ( s )   d s ∫ u i u i + 1 f ( s )   d s s_i^{'}=E\{S\}=\frac{\int_{u_i}^{u_{i+1}}sf(s)\ ds}{\int_{u_i}^{u_{i+1}}f(s)\ ds} si=E{S}=uiui+1f(s) dsuiui+1sf(s) ds

方法二:
D = E { f ( S , s i ′ ) } = ∫ u i u i + 1 ( s − s i ′ ) 2 f ( s )   d s = ∫ u i u i + 1 s 2 f ( s )   d s ‾ − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s ‾ \begin{aligned} D&= E\{f(S,s_i^{'})\}=\int_{u_i}^{u_{i+1}}(s-s_i^{'})^2f(s)\ ds \\ & = \underline{\int_{u_i}^{u_{i+1}}s^2f(s)\ ds}-\underline{\int_{u_i}^{u_{i+1}}2ss_i^{'}f(s)\ ds+\int_{u_i}^{u_{i+1}}s_i^{'2}f(s)\ ds } \end{aligned} D=E{f(S,si)}=uiui+1(ssi)2f(s) ds=uiui+1s2f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds
上述第一项为定值,所需对于D最小化来说,我们需要将第二项最小化,即:
M i n s i ′   ∫ u i u i + 1 s i ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s i ′ s f ( s )   d s Min_{s_i^{'}}\ \int_{u_i}^{u_{i+1}}s_i^{'2}f(s)\ ds-\int_{u_i}^{u_{i+1}}2s_i^{'}sf(s)\ ds Minsi uiui+1si2f(s) dsuiui+12sisf(s) ds
为了方便,我们设:
x = ∫ u i u i + 1 f ( s )   d s , y = ∫ u i u i + 1 s f ( s )   d s x=\int_{u_i}^{u_{i+1}}f(s)\ ds, y=\int_{u_i}^{u_{i+1}}sf(s)\ ds x=uiui+1f(s) ds,y=uiui+1sf(s) ds

D = x s i ′ 2 − 2 y s i ′ D=xs_i^{'2}-2ys_i^{'} D=xsi22ysi

∂ D ∂ s i ′ = 2 x s i ′ − 2 y = 0 \frac{\partial D}{\partial s_i^{'}}=2xs_i^{'}-2y=0 siD=2xsi2y=0
故:
s i ′ = y x s i ′ = E { S } = ∫ u i u i + 1 s f ( s )   d s ∫ u i u i + 1 f ( s )   d s \begin{aligned} & s_i^{'}=\frac{y}{x} \\ &s_i^{'}=E\{S\}=\frac{\int_{u_i}^{u_{i+1}}sf(s)\ ds}{\int_{u_i}^{u_{i+1}}f(s)\ ds} \end{aligned} si=xysi=E{S}=uiui+1f(s) dsuiui+1sf(s) ds

2.2 求 u i u_i ui

我们假设levels s i ′ s_i^{'} si已知。F为MSE
D = E [ f ( s i n − s o u t ) ] = ∑ i = 1 N ∫ u i u i + 1 F ( s − s i ′ )   f ( x )   d x \begin{aligned} D & = E[f(s_{in}-s_{out})] \\ & = \sum_{i=1}^{N} \int_{u_i}^{u_{i+1}} F(s-s_i^{'})\ f(x)\ dx \\ \end{aligned} D=E[f(sinsout)]=i=1Nuiui+1F(ssi) f(x) dx

∂ D ∂ u i = ∂ ∂ u i { 无 关 项 + ∫ u i − 1 u i ( s − s i − 1 ′ ) 2 f ( s )   d s + ∫ u i u i + 1 ( s − s i ′ ) 2 f ( s )   d s } = ∂ ∂ u i { 无 关 项 + ∫ u i − 1 u i s 2 f ( s )   d s − ∫ u i − 1 u i 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i s i − 1 ′ 2 f ( s )   d s + ∫ u i u i + 1 s 2 f ( s )   d s − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s } = ∂ ∂ u i { 无 关 项 − ∫ u i − 1 u i 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i s i − 1 ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s s i ′ f ( s )   d s + ∫ u i u i + 1 s i ′ 2 f ( s )   d s } = ∂ ∂ u i { 无 关 项 − ∫ u i − 1 u i + 1 2 s s i − 1 ′ f ( s )   d s + ∫ u i − 1 u i + 1 s i − 1 ′ 2 f ( s )   d s − ∫ u i u i + 1 2 s ( s i ′ − s i − 1 ′ ) f ( s )   d s + ∫ u i u i + 1 ( s i ′ 2 − s i − 1 ′ 2 ) f ( s )   d s } = ∂ ∂ u i { 无 关 项 − ( s i ′ − s i − 1 ′ ) F 1 ( s ) ∣ u i u i + 1 + ( s i ′ 2 − s i − 1 ′ 2 ) F 2 ( s ) ∣ u i u i + 1 = 2 ( s i ′ − s i − 1 ′ ) u i f ( u i ) − ( s i ′ 2 − s i − 1 ′ 2 ) f ( u i ) = ( s i ′ − s i − 1 ′ ) f ( u i ) { 2 u i − ( s i ′ + s i − 1 ′ ) } = 0 = = > u i = s i ′ + s i − 1 ′ 2 \begin{aligned} \frac{\partial D}{\partial u_i}&=\frac{\partial }{\partial u_i}\{无关项+\int_{u_i-1}^{u_{i}}(s-s_{i-1}^{'})^2f(s)\ ds+\int_{u_i}^{u_{i+1}}(s-s_i^{'})^2f(s)\ ds \} \\ = \frac{\partial }{\partial u_i}\{无关项&+\int_{u_i-1}^{u_{i}}s^2f(s)\ ds -\int_{u_i-1}^{u_{i}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i}}s_{i-1}^{'2}f(s)\ ds \\ &+\int_{u_i}^{u_{i+1}}s^2f(s)\ ds -\int_{u_i}^{u_{i+1}}2ss_{i}^{'}f(s)\ ds +\int_{u_i}^{u_{i+1}}s_{i}^{'2}f(s)\ ds \} \\ =\frac{\partial }{\partial u_i}\{无关项&-\int_{u_i-1}^{u_{i}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i}}s_{i-1}^{'2}f(s)\ ds \\ &-\int_{u_i}^{u_{i+1}}2ss_{i}^{'}f(s)\ ds +\int_{u_i}^{u_{i+1}}s_{i}^{'2}f(s)\ ds \} \\ =\frac{\partial }{\partial u_i}\{无关项&-\int_{u_i-1}^{u_{i+1}}2ss_{i-1}^{'}f(s)\ ds +\int_{u_i-1}^{u_{i+1}}s_{i-1}^{'2}f(s)\ ds \\ &-\int_{u_i}^{u_{i+1}}2s(s_{i}^{'}-s_{i-1}^{'})f(s)\ ds +\int_{u_i}^{u_{i+1}}(s_{i}^{'2}-s_{i-1}^{'2})f(s)\ ds \} \\ &=\frac{\partial }{\partial u_i}\{无关项-(s_{i}^{'}-s_{i-1}^{'})F_1(s)|_{u_i}^{u_{i+1}}+(s_{i}^{'2}-s_{i-1}^{'2})F_2(s)|_{u_i}^{u_{i+1}} \\ &=2(s_{i}^{'}-s_{i-1}^{'})u_if(u_i)-(s_{i}^{'2}-s_{i-1}^{'2})f(u_i) \\ &=(s_{i}^{'}-s_{i-1}^{'})f(u_i)\{2u_i-(s_{i}^{'}+s_{i-1}^{'})\}=0 \\ &==>u_i=\frac{s_{i}^{'}+s_{i-1}^{'}}{2} \end{aligned} uiD=ui{=ui{=ui{=ui{+ui1ui(ssi1)2f(s) ds+uiui+1(ssi)2f(s) ds}+ui1uis2f(s) dsui1ui2ssi1f(s) ds+ui1uisi12f(s) ds+uiui+1s2f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds}ui1ui2ssi1f(s) ds+ui1uisi12f(s) dsuiui+12ssif(s) ds+uiui+1si2f(s) ds}ui1ui+12ssi1f(s) ds+ui1ui+1si12f(s) dsuiui+12s(sisi1)f(s) ds+uiui+1(si2si12)f(s) ds}=ui{(sisi1)F1(s)uiui+1+(si2si12)F2(s)uiui+1=2(sisi1)uif(ui)(si2si12)f(ui)=(sisi1)f(ui){2ui(si+si1)}=0==>ui=2si+si1

3.例子

作为第一个例子,我们将使用超过10000个样本的和MSE作为失真测量应用到具有单位方差的高斯pdf中。我们对重构级别使用了两种不同的初始化,具体情况请见下图。当两次迭代步骤间的相对失真减少率为小于1%时,判定其收敛性, ( D k − D k + 1 ) / D k + 1 < 0.01 (D_k-D_{k+1})/D_{k+1}<0.01 (DkDk+1)/Dk+1<0.01

对于两种初始化方式,算法在6次迭代后迅速收敛,到相同的整体失真 D F ∗ D_F^{*} DF
在这里插入图片描述
在这里插入图片描述
相关的迭代过程图:
在这里插入图片描述

完结撒花,不得不说,手敲这些公式真心累~!!!!
本文与博客园同步更新!!!!

Reference: [1]Quantizing for Minimum Distortion*
[2]Source coding

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值