sk-learn & pytorch 笔记

这篇博客主要探讨了SVM和支持向量机中常用的函数,并介绍了如何在PyTorch中实现正则化,特别是在训练神经网络时,通过设置weight_decay参数来控制正则化的强度。
摘要由CSDN通过智能技术生成

SVM

X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
# 两个类别 每类有 20 个点,Y 为 40 行 1 列的列向量
Y = [0] * 20 + [1] * 20

# 建立 svm 模型
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)

常用函数:

dir()
help()

NN

self.hiddden = torch.nn.Linear(n_feature, n_hidden)  # 定义隐层网络
self.out = torch.nn.Linear(n_hidden, n_output)  # 定义输出层网络

代码参考:https://blog.csdn.net/weixin_41477928/article/details/123337949?spm=1001.2014.3001.5506
只添加了一个正则化,在这句:

optimizer = torch.optim.Adam(net.parameters(), lr=lr,weight_decay
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值