SVM
X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
# 两个类别 每类有 20 个点,Y 为 40 行 1 列的列向量
Y = [0] * 20 + [1] * 20
# 建立 svm 模型
clf = svm.SVC(kernel='linear')
clf.fit(X, Y)
常用函数:
dir()
help()
NN
self.hiddden = torch.nn.Linear(n_feature, n_hidden) # 定义隐层网络
self.out = torch.nn.Linear(n_hidden, n_output) # 定义输出层网络
代码参考:https://blog.csdn.net/weixin_41477928/article/details/123337949?spm=1001.2014.3001.5506
只添加了一个正则化,在这句:
optimizer = torch.optim.Adam(net.parameters(), lr=lr,weight_decay