目录
引言
在以前做传统块存储的时代,我们针对很多的行业做了workload的调研,包含块大小、随机读,读写比例等等,在传统存储场景,知道行业的workload对于预估业务的IOPS性能有很好地指导意义,其次,也可以制作针对行业的存储配置最佳实践。
很多年前获取这些信息是一个比较难的过程,毕竟传统的存储设备是直接销售到了客户的现场,缺乏有效地权利来获取运行信息,一般都是在进行性能调优及其他配置升级的时候进行获取的,这些很大意义上对于很多客户来说也算是机密数据。
针对AIGC的场景,我其实是比较好奇的,大模型的训练和推理对于存储的诉求怎么样?因为我们在太多的PPT里面听到的描述是,大模型训练对于存储有高性能的诉求,到底多高的性能、什么样的特征,从来语焉不详,今天我们解读weka的一个报告,来看看他们所谓的AIGC领域的存储IO特征。
第一章节 LLM&AIGC时代的计算架构特征
存储的变化都是基于计算和存储介质造就的。在最早的IBM大型机时代是提供大型机适配的大硬盘(那是IBM的专属时代,虽然有少量的兼容机厂商也在做。
随着介质的变化,小型的硬盘和内存技术兴起,更多的是商务的大幅下降,催生了阵列存储的产生,并且快速的替代了大硬盘。其后随着关系型数据库这个上一个时代最值钱的数据不断的发展,产生了各种的高端存储,架构也随着一些硬件技术的进步做了很多的演进,从scale-out到scale-out,但是依然是价格高企,单价居高不下。
高端存储的PPT里面宣传的主要方向是高性能、高可靠、高扩展,各种名词堆上去的企业级存储平台。心情好的话我们再加点对于业务的描述,比如说business-critical 、mission critical。为什么MK