AIGC内容分享(六):AIGC世界的IO特征研究

目录

引言

第一章节 LLM&AIGC时代的计算架构特征  

第二章节 AIGC时代的存储主要挑战 

第三章节 LLM&AIGC时代的元数据挑战  

第四章节 LLM&AIGC时代的IO特征分析  

结论  


引言

在以前做传统块存储的时代,我们针对很多的行业做了workload的调研,包含块大小、随机读,读写比例等等,在传统存储场景,知道行业的workload对于预估业务的IOPS性能有很好地指导意义,其次,也可以制作针对行业的存储配置最佳实践。

很多年前获取这些信息是一个比较难的过程,毕竟传统的存储设备是直接销售到了客户的现场,缺乏有效地权利来获取运行信息,一般都是在进行性能调优及其他配置升级的时候进行获取的,这些很大意义上对于很多客户来说也算是机密数据。

针对AIGC的场景,我其实是比较好奇的,大模型的训练和推理对于存储的诉求怎么样?因为我们在太多的PPT里面听到的描述是,大模型训练对于存储有高性能的诉求,到底多高的性能、什么样的特征,从来语焉不详,今天我们解读weka的一个报告,来看看他们所谓的AIGC领域的存储IO特征。

第一章节 LLM&AIGC时代的计算架构特征  

存储的变化都是基于计算和存储介质造就的。在最早的IBM大型机时代是提供大型机适配的大硬盘(那是IBM的专属时代,虽然有少量的兼容机厂商也在做。

随着介质的变化,小型的硬盘和内存技术兴起,更多的是商务的大幅下降,催生了阵列存储的产生,并且快速的替代了大硬盘。其后随着关系型数据库这个上一个时代最值钱的数据不断的发展,产生了各种的高端存储,架构也随着一些硬件技术的进步做了很多的演进,从scale-out到scale-out,但是依然是价格高企,单价居高不下。    

ee717d5e6fb241fea1c2bdf6a5189474.png

高端存储的PPT里面宣传的主要方向是高性能、高可靠、高扩展,各种名词堆上去的企业级存储平台。心情好的话我们再加点对于业务的描述,比如说business-critical 、mission critical。为什么MK

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值