基于Matlab的变压器铁芯截面优化设计

本文介绍了基于Matlab的变压器铁芯截面优化设计,通过极值原理推导各级片宽和叠厚的关系,以最大化有效面积。程序以125mm直径、6级为例,计算结果显示理论填充率高于实际值,但片宽和叠厚非整数,可能增加加工难度。优化设计考虑了加工效率和标准化,为实际工程提供了参考。
摘要由CSDN通过智能技术生成

基于Matlab的变压器铁芯截面优化设计

前言

  变压器是电力系统中非常重要的设备,在变压器设计过程中,给定的铁心直径条件下,铁心截面积越大、填充率越高,变压器经济指标越好,因此铁心截面优化在变压器优化设计中是一个比较重要的环节。
  为了充分利用圆形绕组内空间,铁心柱截面常采用多级阶梯形结构,如下图所示,截面在圆内是轴向对称的。阶梯形结构的每级都是由许多同种宽度的硅钢片叠起来的,当铁心柱外接圆直径一定时,使铁心柱有效面积最大是本设计的关键。铁心截面最大面积计算是一个典型的非线性整数规划问题,而本文从极值原理出发,推导出各级片宽和叠厚的关系,通过迭代计算求得较优的铁心截面设计方案。
在这里插入图片描述

优化思路

  考虑到对称性,仅考虑四分之一截面。每级硅钢片对应角度为: θ 1 、 θ 2 … … θ n θ_1 、θ_2……θ_n θ1θ2θn
  叠片宽度: B n = r c o s ( θ n ) B_n=rcos(θ_n) Bn=rcos(θn)
  叠片厚度: A n = r [ s i n ( θ n ) − s i n ( θ n − 1 ) ] ( n ≥ 2 ) ; A 1 = r s i n ( θ 1 ) A_n=r[sin(θ_n )-sin(θ_{n-1})](n\geq2) ; A_1=rsin(θ_1 ) An=r[sin(θn)sin(θn1)](n2);A1=rsin(θ1)
  有效面积:
S = ∑ A n B n = r 2 [ s i n ( θ 1 ) c o s ( θ 1 ) + ( s i n ( θ 2 ) − s i n ( θ 1 ) ) c o s ( θ 2 ) + ⋯ ⋯ + ( s i n ( θ n ) − s i n ( θ n − 1 ) ) c o s ( θ n ) ] S=∑A_n B_n=r^2 [sin(θ_1 )cos(θ_1 )+(sin(θ_2 )-sin(θ_1 ))cos(θ_2 )+⋯⋯+(sin(θ_n )-sin(θ_{n-1} ))cos(θ_n )] S=AnBn=r2[sin(θ1)cos(θ1)+(sin(θ2)sin(θ1))cos(θ2)++(sin(θn)sin(θn1))cos(θn)]
  利用极值原理求S最大值,分别对 θ 1 、 θ 2 … … θ n θ_1 、θ_2……θ_n θ1θ2θn求导,令导数为零得:
∂ S ∂ θ 1 = r 2 ( c o s ⁡ ( 2 θ 1 ) − c o s ( ⁡ θ 1 ) c o s ⁡ ( θ 1 ) ) = 0 \frac{∂S}{∂θ_1}=r^2 (cos⁡(2θ_1 )-cos(⁡θ_1) cos⁡(θ_1) )=0 θ1S=r2(cos(2θ1)cos(θ1)cos(θ1))=0
∂ S ∂ θ 2 = r 2 ( c o s ( ⁡ 2 θ 2 ) + s i n ( θ 1 ) s i n ⁡ ( θ 2 ) − c o s ⁡ ( θ 2 ) c o s ⁡ ( θ 3 ) ) = 0 \frac{∂S}{∂θ_2}=r^2 (cos(⁡2θ_2)+sin(θ_1)sin⁡( θ_2)-cos⁡(θ_2) cos⁡(θ_3) )=0 θ2S=r2(cos(2θ2)+sin(θ1)sin(θ2)cos(θ2)cos(θ3))=0

……

∂ S ∂ θ n − 1 = r 2 ( c o s ⁡ ( 2 θ n − 1 ) ⁡ + s i n ⁡ ( θ n − 2 ) s i n ( θ n − 1 ) − c o s ⁡ ( θ n − 1 ) c o s ⁡ ( θ n ) ) = 0 \frac{∂S}{∂θ_{n-1} }=r^2 (cos⁡(2θ_{n-1} )⁡+sin⁡(θ_{n-2})sin(θ_{n-1})-cos⁡(θ_{n-1}) cos⁡(θ_n) )=0 θn1S=r2(cos(2θn1)+sin(θn2)sin(θn1)cos(θn1)cos(θn))=0
  化简得:
c o s ⁡ ( θ 2 ) = c o s ⁡ ( 2 θ 1 ) c o s ⁡ ( θ 1 ) cos⁡(θ_2)=\frac{cos⁡(2θ_1 )}{cos⁡(θ_1)} cos(θ2)=cos(θ1)cos(2θ1)
c o s ⁡ ( θ 3 ) = c o s ⁡ ( 2 θ 2 ) c o s ⁡ ( θ 2 ) + s i n ⁡ ( θ 1 ) t a n ⁡ ( θ 2 ) cos⁡(θ_3)=\frac{cos⁡(2θ_2)}{cos⁡(θ_2)} +sin⁡(θ_1)tan⁡(θ_2) cos(θ3)=cos(θ2)cos(2θ2)+sin(θ1)tan(θ2)

……

c o s ⁡ ( θ n ) = c o s ⁡ ( 2 θ n − 1 ) c o s ⁡ ( θ n − 1 ) + s i n ⁡ ( θ n − 2 ) t a n ⁡ ( θ n − 1 ) cos⁡(θ_n)=\frac{cos⁡(2θ_{n-1})}{cos⁡(θ_{n-1})} +sin⁡(θ_{n-2})tan⁡(θ_{n-1}) cos(θn)=cos(θn1)cos(2θn1)+sin(θn2)tan(θn1)
  从而可得:
A 1 = r 2 − B 1 2 A_1=\sqrt{r^2-B_1^2 } A1=r2B12
B 2 = 2 B 1 2 − r 2 B 1 , A 2 = r 2 − B 2 2 B_2=\frac{2B_1^2-r^2}{B_1} ,A_2=\sqrt{r^2-B_2^2 } B2=B12B12r2,A2=r2B22
B 3 = 2 B 2 2 − r 2 + A 1 A 2 B 2 , A 3 = r 2 − B 3 2 B_3=\frac{2B_2^2-r^2+A_1 A_2}{B_2} ,A_3=\sqrt{r^2-B_3^2 } B3=B22B22r2+A1A2,A3=r2B32

……

B n = 2 B n − 1 2 − r 2 + A n − 2 A n − 1 B n − 1 , A n = r 2 − B n 2 B_n=\frac{2B_{n-1}^2-r^2+A_{n-2} A_{n-1}}{B_{n-1}} ,A_n=\sqrt{r^2-B_n^2 } Bn=Bn12Bn12r2+An2An1,An=r2Bn2
  一般硅钢片级数大于2,则有:
B 2 = 2 B 1 2 − r 2 B 1 > 0 B_2=\frac{2B_1^2-r^2}{B_1} >0 B2=B12B12r2>0
  即:
2 2 r < B 1 < r \frac{\sqrt{2}}{2} r<B_1<r 22 r<B1<r
  由此确定 B 1 B_1 B1的范围为:
2 2 r < B 1 < r \frac{\sqrt{2}}{2} r<B_1<r 22 r<B1<r
  当 B 1 B_1 B1确定后, B 2 B_2 B2 B 3 B_3 B3,…… B n B_n Bn的值都可以确定,所以可以在 2 2 r < B 1 < r \frac{\sqrt{2}}{2} r<B_1<r 22 r<B1<r范围内采用迭代的方法,每次迭代 B 1 B_1 B1的值加1(mm),求出最大面积和对应的片宽和叠厚,流程图如下。
在这里插入图片描述

Matlab程序运行结果:

  以铁芯柱直径125mm,分级数6为例,程序运行结果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果分析

  运行代码,计算铁芯柱直径为D=120mm、D=125mm和D=130mm,分级数为6时的最大填充率和对应的片宽和叠厚,并与《电磁装置设计原理》的表A-8的标准值对比:
在这里插入图片描述

  分析:从计算值与实际值来看,计算值的铁心填充率更大一些,但片宽与叠厚不是整数。在加工中,整数的片宽叠厚更容易加工。并且D=125mm和D=130mm等都采用了片宽120,110,100,70,50等规格的硅钢片,所以采用这些数值在加工中可以先加工片宽,再根据不同直径加工叠厚,膜具大大节省了,加工速度显著提高,有利于标准化。对比二者铁心填充率,理论值只是略大于实际值,但若按此尺寸加工,效率大幅下降,成本提高,且对应每一个直径都要采用一套模具,加工繁琐不利于标准化。从实际工程考虑,牺牲小幅填充率提高加工的效率,便于统一标准是很好的选择。

代码

matlab代码如下:

1.输入铁芯柱直径D和分级数n
fprintf('请输入铁芯柱直径D:');
D=cell2mat(inputdlg('请输入铁芯柱直径D'));
D=str2double(D)
fprintf('请输入分级数n:');
n=cell2mat(inputdlg('请输入分级数n'));
n=str2double(n)
2.计算最优片宽和叠厚
B=zeros(1,n); %片宽
Bmax=B; %叠厚
A=zeros(1,n);
Amax=A;
%迭代求解
B0=sqrt(2)/4*D;
r=D/2
S=0;
Smax=0;
error=0;
for i=0:(r-B0)
    S=0;
    error=0;
    for l=1:n
        A(1,l)=0;
        B(1,l)=0;
    end
    B(1,1)=B0+i;
    A(1,1)=sqrt(r^2-B(1,1)^2);
    S=S+A(1,1)*B(1,1);
    B(1,2)=(2*(B(1,1)^2)-r^2)/B(1,1);
    if B(1,2)>r||B(1,2)<0
        error=1;
    end
    A(1,2)=sqrt(r^2-B(1,2)^2);
    S=S+(A(1,2)-A(1,1))*B(1,2);
    if n>2
        for j=3:n
            B(1,j)=(2*(B(1,j-1)^2)-r^2+A(1,j-2)*A(1,j-1))/B(1,j-1);
            if B(1,j)>r||B(1,j)<0
                error=1;
            end
            A(1,j)=sqrt(r^2-B(1,j)^2);
            S=S+(A(1,j)-A(1,j-1))*B(1,j);
        end
    end
    if S>Smax&&error==0
        Smax=S;
        for k=1:n
            Amax(1,k)=A(1,k);
            Bmax(1,k)=B(1,k);
        end
    end
end
Amax=Amax*2;
Bmax=Bmax*2;
Smax=Smax*4;
3.输出
fprintf('结果:\n');
fprintf('铁芯柱直径为:%dmm\n分级数为:%d',D,n);
fprintf('硅钢片有效面积为:%d mm^2\n铁心截面圆面积为:%d mm^2',Smax,(pi*D^2/4)*100);
fprintf('铁芯填充率为:%d%%',Smax/(pi*D^2/4)*100);
fprintf('      片宽          叠厚');
for i=1:n
    if i>1
        fprintf('第%d级:%d %d\n',i,Bmax(1,i),(Amax(1,i)-Amax(1,i-1))/2);
    else
        fprintf('第%d级:%d %d\n',i,Bmax(1,1),Amax(1,1));
    end
end
4.画铁芯柱示意图
fprintf('铁芯柱示意图如下:\n');
rectangle('Position',[-r,-r,D,D],'Curvature',[1,1]),axis equal;
hold on;
for i=1:n
    if i>=2
        rectangle('Position',[-Bmax(1,i)/2,-Amax(1,i)/2,Bmax(1,i),(Amax(1,i)-Amax(1,i-1))/2]),axis equal;
        rectangle('Position',[-Bmax(1,i)/2,Amax(1,i-1)/2,Bmax(1,i),(Amax(1,i)-Amax(1,i-1))/2]),axis equal;
    else
        rectangle('Position',[-Bmax(1,1)/2,-Amax(1,1)/2,Bmax(1,1),Amax(1,1)]),axis equal;
    end
end
axis off %隐藏坐标轴

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值