电机控制学习笔记——PMSM数学模型
0 引言
要实现对永磁同步电机的精准控制,首先需要对永磁同步电机进行建模,获得其电压方程、磁链方程、转矩方程和运动方程,在此基础上,才能进一步研究其控制策略。而永磁同步电机是一个非线性时变的复杂系统,各变量之间的关系及计算较为复杂,建模之后还需要用坐标变换进行简化。
1 电压方程和磁链方程
由于电机定转子存在相对运动,气隙磁密存在谐波,导致电磁关系复杂;若再考虑电流谐波,磁路饱和,以及电导、磁导等参数摄动,系统复杂程度将进一步提高。为简化分析,便于建模和设计对应的控制策略,往往对PMSM作出以下假设
[
1
]
^{[1]}
[1]:
1)三相绕组对称,空间互差2π/3电角度;
2)忽略磁路饱和;
3)不计磁滞损耗和涡流损耗;
4)忽略齿槽效应,每相磁动势沿气隙正弦分布;
5)转子无阻尼绕组。
因此,PMSM在三相静止
a
−
b
−
c
a-b-c
a−b−c坐标系下的电压方程和磁链方程可建立为:
u
a
b
c
=
R
s
i
a
b
c
+
p
ψ
a
b
c
s
(1)
\boldsymbol{u}_{abc}=R_s\boldsymbol{i}_{abc}+p\boldsymbol{\psi }_{abc}^{s}\tag{1}
uabc=Rsiabc+pψabcs(1)
ψ
a
b
c
s
=
L
a
b
c
i
a
b
c
+
ψ
a
b
c
r
(2)
\boldsymbol{\psi }_{abc}^{s}=\boldsymbol{L}_{abc}\boldsymbol{i}_{abc}+\boldsymbol{\psi }_{abc}^{r}\tag{2}
ψabcs=Labciabc+ψabcr(2)其中:
p
p
p为微分算子,
p
=
d
(
⋅
)
/
d
t
p=\mathrm{d}\left( \cdot \right) /\mathrm{d}t
p=d(⋅)/dt;
i
a
b
c
\boldsymbol{i}_{abc}
iabc为定子相电流矢量,
i
a
b
c
=
[
i
a
i
b
i
c
]
T
\boldsymbol{i}_{abc}=\left[ \begin{matrix} i_a& i_b& i_c\\\end{matrix} \right] ^T
iabc=[iaibic]T;
u
a
b
c
\boldsymbol{u}_{abc}
uabc为定子相电压矢量,
u
a
b
c
=
[
u
a
u
b
u
c
]
T
\boldsymbol{u}_{abc}=\left[ \begin{matrix} u_a& u_b& u_c\\\end{matrix} \right] ^T
uabc=[uaubuc]T;
ψ
a
b
c
s
\boldsymbol{\psi }_{abc}^{s}
ψabcs为定子磁链矢量,
ψ
a
b
c
s
=
[
ψ
a
s
ψ
b
s
ψ
c
s
]
T
\boldsymbol{\psi }_{abc}^{s}=\left[ \begin{matrix} \psi _{a}^{s}& \psi _{b}^{s}& \psi _{c}^{s}\\\end{matrix} \right] ^T
ψabcs=[ψasψbsψcs]T;
ψ
a
b
c
r
\boldsymbol{\psi }_{abc}^{r}
ψabcr为转子磁链矢量,
ψ
a
b
c
r
=
ψ
f
[
cos
θ
e
cos
(
θ
e
−
2
π
3
)
cos
(
θ
e
+
2
π
3
)
]
T
\boldsymbol{\psi }_{abc}^{r}=\psi _f\left[ \begin{matrix} \cos \theta_{e}& \cos(\theta_e-\frac{2\pi}{3})& \cos(\theta _e+\frac{2\pi}{3})\\\end{matrix} \right]^T
ψabcr=ψf[cosθecos(θe−32π)cos(θe+32π)]T;
R
s
R_s
Rs为定子绕组相电阻;
ψ
f
\psi _f
ψf为转子永磁体磁链幅值;
θ
e
\theta _{\mathrm{e}}
θe为转子电角度,定义为转子永磁体轴线逆时针超前a相的夹角;
L
a
b
c
\boldsymbol{L}_{abc}
Labc为三相定子绕组电感矩阵,只考虑基波气隙磁场,电感矩阵可写为:
L
a
b
c
=
[
L
a
a
M
a
b
M
a
c
M
b
a
L
b
b
M
b
c
M
c
a
M
c
b
L
c
c
]
(3)
\boldsymbol{L}_{\mathrm{abc}}=\left[ \begin{matrix} L_{aa}& M_{ab}& M_{ac}\\ M_{ba}& L_{bb}& M_{bc}\\ M_{ca}& M_{cb}& L_{cc}\\\end{matrix} \right] \tag{3}
Labc=⎣⎡LaaMbaMcaMabLbbMcbMacMbcLcc⎦⎤(3) 其中,电感矩阵主对角线元素分别为定子a相、b相、c相绕组的自感,
M
a
b
M_{ab}
Mab为a相和b相绕组之间的互感,且
M
a
b
=
M
b
a
,
M
a
c
=
M
c
a
,
M
b
c
=
M
c
b
M_{ab}=M_{ba},M_{ac}=M_{ca}, M_{bc}=M_{cb}
Mab=Mba,Mac=Mca,Mbc=Mcb。
三相静止坐标系下的PMSM数学模型十分复杂,在实际应用中通常需要通过坐标变换进行简化。首先,通过Clarke变换,将电机方程从三相静止
a
−
b
−
c
a-b-c
a−b−c坐标系转换到两相静止
α
−
β
\alpha -\beta
α−β坐标系,如图1所示。忽略电压电流零序分量,变换矩阵为:
a
b
c
→
α
β
:
C
3
s
/
2
s
=
2
3
[
1
−
1
2
−
1
2
0
3
2
−
3
2
]
(4)
abc\rightarrow \alpha \beta \text{:} C_{3s/2s}=\frac{2}{3}\left[ \begin{matrix} 1& -\frac{1}{2}& -\frac{1}{2}\\ 0& \frac{\sqrt{3}}{2}& -\frac{\sqrt{3}}{2}\\\end{matrix} \right] \tag{4}
abc→αβ:C3s/2s=32[10−2123−21−23](4) 式中,系数2/3保证坐标变换前后各物理量幅值不变。
因此,经过Clarke变换后,两相静止
α
−
β
\alpha -\beta
α−β坐标系下的电压方程和磁链方程为:
u
α
β
=
R
s
i
α
β
+
p
ψ
α
β
s
(5)
\boldsymbol{u}_{\alpha \beta}=R_s\boldsymbol{i}_{\alpha \beta}+p\boldsymbol{\psi }_{\alpha \beta}^{s}\tag{5}
uαβ=Rsiαβ+pψαβs(5)
ψ
α
β
s
=
L
α
β
i
α
β
+
ψ
α
β
r
(6)
\boldsymbol{\psi }_{\alpha \beta}^{s}=\boldsymbol{L}_{\alpha \beta}\boldsymbol{i}_{\alpha \beta}+\boldsymbol{\psi }_{\alpha \beta}^{r}\tag{6}
ψαβs=Lαβiαβ+ψαβr(6)其中,
i
α
β
\boldsymbol{i}_{\alpha \beta}
iαβ为
α
−
β
\alpha -\beta
α−β坐标系下的定子电流矢量,
i
α
β
=
[
i
α
i
β
]
T
\boldsymbol{i}_{\alpha \beta}=\left[ \begin{matrix} i_{\alpha}& i_{\beta}\\\end{matrix}\right] ^T
iαβ=[iαiβ]T;
u
α
β
\boldsymbol{u}_{\alpha \beta}
uαβ为
α
−
β
\alpha -\beta
α−β坐标系下的定子电压矢量,
u
α
β
=
[
u
α
u
β
]
T
\boldsymbol{u}_{\alpha \beta}=\left[ \begin{matrix} u_{\alpha}& u_{\beta}\\\end{matrix} \right] ^T
uαβ=[uαuβ]T;
ψ
α
β
s
\boldsymbol{\psi }_{\alpha \beta}^{s}
ψαβs为
α
−
β
\alpha -\beta
α−β坐标系下的定子磁链矢量,
ψ
α
β
s
=
[
ψ
α
s
ψ
β
s
]
T
\boldsymbol{\psi }_{\alpha \beta}^{s}=\left[ \begin{matrix} \psi _{\alpha}^{s}& \psi _{\beta}^{s}\\\end{matrix} \right] ^T
ψαβs=[ψαsψβs]T;
ψ
α
β
r
\boldsymbol{\psi}_{\alpha \beta}^{r}
ψαβr为
α
−
β
\alpha -\beta
α−β坐标系下的转子磁链矢量,
ψ
α
β
r
=
ψ
f
[
cos
θ
e
sin
θ
e
]
T
\boldsymbol{\psi }_{\alpha \beta}^{r}=\psi _f\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\\end{matrix} \right] ^T
ψαβr=ψf[cosθesinθe]T;
L
α
β
\boldsymbol{L}_{\alpha \beta}
Lαβ为
α
−
β
\alpha -\beta
α−β坐标系下的定子电感矩阵:
L
α
β
=
[
L
α
α
L
α
β
L
β
α
L
β
β
]
=
[
L
0
+
L
1
cos
(
2
θ
e
)
L
1
sin
(
2
θ
e
)
L
1
sin
(
2
θ
e
)
L
0
−
L
1
cos
(
2
θ
e
)
]
(7)
\boldsymbol{L}_{\alpha \beta}=\left[ \begin{matrix} L_{\alpha \alpha}& L_{\alpha \beta}\\ L_{\beta \alpha}& L_{\beta \beta}\\\end{matrix} \right] =\left[ \begin{matrix} L_0+L_1\cos \left( 2\theta _e \right)& L_1\sin \left( 2\theta _e \right)\\ L_1\sin \left( 2\theta _e \right)& L_0-L_1\cos \left( 2\theta _e \right)\\\end{matrix} \right]\tag{7}
Lαβ=[LααLβαLαβLββ]=[L0+L1cos(2θe)L1sin(2θe)L1sin(2θe)L0−L1cos(2θe)](7)其中,
L
α
α
L_{\alpha \alpha}
Lαα、
L
β
β
L_{\beta \beta}
Lββ为
α
\alpha
α、
β
\beta
β轴自感;
L
α
β
L_{\alpha \beta}
Lαβ、
L
β
α
L_{\beta \alpha}
Lβα为
α
\alpha
α、
β
\beta
β轴互感,且
L
α
β
=
L
β
α
L_{\alpha \beta}=L_{\beta \alpha}
Lαβ=Lβα;
L
0
=
(
L
d
+
L
q
)
/
2
L_0=\left( L_d+L_q \right) /2
L0=(Ld+Lq)/2,称为均值电感;
L
1
=
(
L
d
−
L
q
)
/
2
L_1=\left( L_d-L_q \right) /2
L1=(Ld−Lq)/2,称为半差电感;
L
d
L_d
Ld、
L
q
L_q
Lq分别为
d
d
d轴电感和
q
q
q轴电感。
为消除方程中的时变参数
θ
e
\theta _e
θe,需要通过Park变换,将电机方程从两相静止
α
−
β
\alpha -\beta
α−β坐标系转换到两相旋转
d
−
q
d-q
d−q坐标系,如图1所示。变换矩阵为:
α
β
→
d
q
:
C
2
s
/
2
r
=
[
cos
θ
e
sin
θ
e
−
sin
θ
e
cos
θ
e
]
(8)
\alpha \beta \rightarrow dq\text{:} C_{2s/2r}=\left[ \begin{matrix} \cos \theta _e& \sin \theta _e\\ -\sin \theta _e& \cos \theta _e\\\end{matrix} \right]\tag{8}
αβ→dq:C2s/2r=[cosθe−sinθesinθecosθe](8) 将Park变换矩阵代入式(5),即可得到
d
−
q
d-q
d−q坐标系下的电压方程:
u
d
q
=
R
s
i
d
q
+
(
p
+
j
ω
e
)
(
ψ
d
q
r
+
L
d
q
i
d
q
)
=
(
R
s
+
L
d
q
p
)
i
d
q
−
ω
e
L
q
i
q
+
j
ω
e
(
ψ
f
+
L
d
i
d
)
(9)
\boldsymbol{u}_{dq}=R_s\boldsymbol{i}_{dq}+\left( p+j\omega _e \right) \left( \boldsymbol{\psi }_{dq}^{r}+\boldsymbol{L}_{dq}\boldsymbol{i}_{dq} \right) \\\,\, =\left( R_s+\boldsymbol{L}_{dq}p \right) \boldsymbol{i}_{dq}-\omega _eL_qi_q+j\omega _e\left( \psi _f+L_di_d \right)\tag{9}
udq=Rsidq+(p+jωe)(ψdqr+Ldqidq)=(Rs+Ldqp)idq−ωeLqiq+jωe(ψf+Ldid)(9) 将式(9)还原成矩阵形式,可得
d
−
q
d-q
d−q坐标系下的电压方程和磁链方程:
[
u
d
u
q
]
=
[
R
+
L
d
p
−
ω
e
L
q
ω
e
L
d
R
+
L
q
p
]
[
i
d
i
q
]
+
[
0
ω
e
ψ
f
]
(10)
\left[ \begin{array}{c} u_d\\ u_q\\\end{array} \right] =\left[ \begin{aligned} &\begin{matrix} R+L_{\mathrm{d}}p& -\omega _eL_q\\\end{matrix}\\ &\begin{matrix} \omega _eL_d& R+L_qp\\\end{matrix}\\\end{aligned} \right] \left[ \begin{array}{c} i_d\\ i_q\\\end{array} \right] +\left[ \begin{array}{c} 0\\ \omega _e\psi _f\\\end{array} \right]\tag{10}
[uduq]=[R+Ldp−ωeLqωeLdR+Lqp][idiq]+[0ωeψf](10)
[
ψ
d
s
ψ
q
s
]
=
[
L
d
0
0
L
q
]
[
i
d
i
q
]
+
[
ψ
f
0
]
(11)
\left[ \begin{array}{c} \psi _{d}^{s}\\ \psi _{q}^{s}\\\end{array} \right] =\left[ \begin{matrix} L_d& 0\\ 0& L_q\\\end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\\end{array} \right] +\left[ \begin{array}{c} \psi _f\\ 0\\\end{array} \right]\tag{11}
[ψdsψqs]=[Ld00Lq][idiq]+[ψf0](11)其中,
u
d
u_d
ud和
u
q
u_q
uq分别表示同步坐标系下的d轴和q轴电压;
i
d
i_d
id和
i
q
i_q
iq分别表示同步坐标系下的d轴和q轴电流;
ω
e
\omega _e
ωe是转子电角速度(rad/s);
ψ
f
\psi _f
ψf是永磁体磁链;
R
R
R是定子绕组电阻。
2 转矩方程和运动方程
永磁同步电机的瞬时功率可定义为:
P
=
u
a
b
c
T
i
a
b
c
(12)
P=\boldsymbol{u}_{abc}^{T}\boldsymbol{i}_{abc}\tag{12}
P=uabcTiabc(12) 采用恒幅值变换,两相旋转
d
−
q
d-q
d−q坐标系下的瞬时功率可表示为:
P
=
3
2
u
d
q
T
i
d
q
(13)
P=\frac{3}{2}\boldsymbol{u}_{dq}^{T}\boldsymbol{i}_{dq}\tag{13}
P=23udqTidq(13) 将电压方程式(10)代入式(13),得:
P
=
3
2
[
R
s
(
i
d
2
+
i
q
2
)
+
(
L
d
i
d
d
i
d
d
t
+
L
q
i
q
d
i
q
d
t
)
+
ω
e
(
ψ
f
i
q
+
(
L
d
−
L
q
)
i
d
i
q
)
]
(14)
P=\frac{3}{2}\left[ R_s\left( i_{d}^{2}+i_{q}^{2} \right) +\left( L_di_d\frac{\mathrm{d}i_d}{\mathrm{d}t}+L_qi_q\frac{\mathrm{d}i_q}{\mathrm{d}t} \right) +\omega _e\left( \psi _fi_q+\left( L_d-L_q \right) i_di_q \right) \right]\tag{14}
P=23[Rs(id2+iq2)+(Ldiddtdid+Lqiqdtdiq)+ωe(ψfiq+(Ld−Lq)idiq)](14) 式(14)右侧第一项对应定子绕组铜耗,第二项对应定子电感储能变化导致的功率波动,第三项对应定子电流和反电势相互作用产生的功率,也是电机输入功率耦合到转子上的功率,即电磁功率
P
e
P_e
Pe。从而,电磁转矩
T
e
T_e
Te可记为:
T
e
=
3
2
n
p
[
ψ
f
+
i
d
(
L
d
−
L
q
)
]
i
q
(15)
T_e=\frac{3}{2}n_p[\psi _f+i_d\left( L_d-L_q \right) ]i_q\tag{15}
Te=23np[ψf+id(Ld−Lq)]iq(15)其中,
n
p
n_p
np为PMSM的极对数。
由式(15)可知,对于SPMSM,
L
d
=
L
q
L_d=L_q
Ld=Lq,转矩表达式只与
i
q
i_q
iq和
ψ
f
\psi _f
ψf有关,电机转矩特性将与直流电机类似;而对于IPMSM,
L
d
≠
L
q
L_d\ne L_q
Ld=Lq,转矩表达式还附带
d
d
d、
q
q
q轴电感的差值与
i
d
i_d
id乘积相关项,称为磁阻转矩,是由转子凸极效应引起的,该效应有利于提升电机转矩密度和扩展弱磁扩速区间。
根据牛顿第二定律,PMSM的转子运动方程如式(16)所示:
J
d
ω
r
d
t
=
T
e
−
T
L
−
B
ω
r
(16)
J\frac{\mathrm{d}\omega _r}{\mathrm{d}t}=T_e-T_L-B\omega _r\tag{16}
Jdtdωr=Te−TL−Bωr(16)
其中,
ω
r
\omega _r
ωr是电机机械角速度;
J
J
J是电机转动惯量;
T
L
T_L
TL是负载转矩;
B
B
B是阻尼粘滞系数。
参考文献
[1] 李永东. 交流电机数字控制系统[M]. 机械工业出版社, 2017