问题描述
分析
则建立计算p(i,j)的递归式如下:
最优解
代码
#include<bits/stdc++.h>
using namespace std;
#define NUM 50 //物品数量的上限
#define CAP 1500 //背包容量的上限
int w[NUM]; //物品的重量
int v[NUM]; //物品的价值
int p[NUM][CAP]; //用于递归的数组
//形参c是背包的容量W,n是物品的数量
void knapsack(int c, int n)
{
//计算递推边界
int jMax=min(w[n]-1,c); //分界点
for( int j=0; j<=jMax; j++)
p[n][j]=0;
for( int j=w[n]; j<=c; j++)
p[n][j]=v[n];
for( int i=n-1; i>1; i--) //计算递推式
{
jMax=min(w[i]-1,c);
for( int j=0; j<=jMax; j++)
p[i][j]=p[i+1][j];
for(int j=w[i]; j<=c; j++)
p[i][j]=max(p[i+1][j], p[i+1][j-w[i]]+v[i]);
}
p[1][c]=p[2][c];//计算最优值
if (c>=w[1])
p[1][c]=max(p[1][c], p[2][c-w[1]]+v[1]);
}
void traceback( int c, int n, int x[ ])
{
for(int i=1; i<n; i++)
{
if (p[i][c]==p[i+1][c])
x[i]=0;
else
{
x[i]=1;
c-=w[i];
}
}
x[n]=(p[n][c])? 1:0;
}
int main ()
{
int x[NUM];
int W,n;
while (cin>>W && W)
{
cin>>n;
for (int i=1; i<=n; i++)
cin>>w[i]>>v[i];
memset (p, 0, sizeof(p));
knapsack(W, n);
cout<< p[1][W]<<endl;
traceback(W, n, x);
for (int i=1; i<=n; i++)
if (x[i])
cout<< i;
cout<<endl;
}
return 0;
}
其时间复杂度为O(nW)