实现0-1背包的动态规划算法

问题描述

在这里插入图片描述
在这里插入图片描述

分析

在这里插入图片描述
则建立计算p(i,j)的递归式如下:
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

最优解

在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
#define NUM 50 //物品数量的上限
#define CAP 1500 //背包容量的上限
int w[NUM];  //物品的重量
int v[NUM];  //物品的价值
int p[NUM][CAP]; //用于递归的数组
//形参c是背包的容量W,n是物品的数量
void knapsack(int c, int n)
{
    //计算递推边界
    int jMax=min(w[n]-1,c);  //分界点
    for( int j=0; j<=jMax; j++)
        p[n][j]=0;
    for( int j=w[n]; j<=c; j++)
        p[n][j]=v[n];
    for( int i=n-1; i>1; i--)  //计算递推式
    {
        jMax=min(w[i]-1,c);
        for( int j=0; j<=jMax; j++)
            p[i][j]=p[i+1][j];
        for(int j=w[i]; j<=c; j++)
            p[i][j]=max(p[i+1][j], p[i+1][j-w[i]]+v[i]);
    }
    p[1][c]=p[2][c];//计算最优值
    if (c>=w[1])
        p[1][c]=max(p[1][c], p[2][c-w[1]]+v[1]);
}
void traceback( int c, int n, int x[ ])
{
    for(int i=1; i<n; i++)
    {
        if (p[i][c]==p[i+1][c])
            x[i]=0;
        else
        {
            x[i]=1;
            c-=w[i];
        }
    }
    x[n]=(p[n][c])? 1:0;
}
int main ()
{
    int x[NUM];
    int W,n;
    while (cin>>W && W)
    {
        cin>>n;
        for (int i=1; i<=n; i++)
            cin>>w[i]>>v[i];
        memset (p, 0, sizeof(p));
        knapsack(W, n);
        cout<< p[1][W]<<endl;
        traceback(W, n, x);
        for (int i=1; i<=n; i++)
            if (x[i])
                cout<< i;
            cout<<endl;
     }
     return 0;
}

其时间复杂度为O(nW)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值