torch.cuda.synchronize
torch.cuda.synchronize()
是PyTorch库中的一个函数,它可以用于同步CPU和GPU之间的计算。
在GPU执行计算时,通常是异步的,也就是说,计算任务被提交到GPU后,程序并不会等待GPU完成计算,而是立即返回控制权给CPU,继续执行后面的代码。这种异步的计算方式可以提高程序的效率,但也会带来一些问题,比如在GPU计算尚未完成时,CPU就开始访问GPU的计算结果,此时可能会得到错误的结果。
为了避免这种问题,可以使用torch.cuda.synchronize()
函数来同步CPU和GPU之间的计算。这个函数会阻塞CPU线程,直到所有在当前设备上排队的CUDA核心完成执行为止。这样,当torch.cuda.synchronize()
函数返回时,我们可以确保GPU的计算已经完成,并且数据已经准备好被CPU使用。
通常情况下,torch.cuda.synchronize()
函数会在需要获取GPU计算结果的时候被使用,比如在训练深度神经网络时,需要在每个epoch结束后计算验证集的误差,此时就需要使用这个函数来同步CPU和GPU之间的计算,以确保得到正确的结果。