题目:
给定一个二维网格 grid
,其中:
- '.' 代表一个空房间
- '#' 代表一堵
- '@' 是起点
- 小写字母代表钥匙
- 大写字母代表锁
我们从起点开始出发,一次移动是指向四个基本方向之一行走一个单位空间。我们不能在网格外面行走,也无法穿过一堵墙。如果途经一个钥匙,我们就把它捡起来。除非我们手里有对应的钥匙,否则无法通过锁。
假设 k 为 钥匙/锁 的个数,且满足 1 <= k <= 6
,字母表中的前 k
个字母在网格中都有自己对应的一个小写和一个大写字母。换言之,每个锁有唯一对应的钥匙,每个钥匙也有唯一对应的锁。另外,代表钥匙和锁的字母互为大小写并按字母顺序排列。
返回获取所有钥匙所需要的移动的最少次数。如果无法获取所有钥匙,返回 -1
。
示例:
输入:grid = ["@.a.#","###.#","b.A.B"] 输出:8 解释:目标是获得所有钥匙,而不是打开所有锁。
输入:grid = ["@..aA","..B#.","....b"] 输出:6
思路:
给定一个只包含空房间、墙、起点和终点的二维网格,我们可以使用广度优先搜索的方法求出起点到终点的最短路径。这是因为在最短路径上,我们最多只会经过每个房间一次。因此从起点开始,使用队列进行广度优先搜索,当第一个搜索到某个节点的时候,我们就可以得到从起点到该节点正确的最短路。
如果加上了钥匙和锁,我们应该如何解决问题呢?类似地,在最短路径上也不可能存在如下的情况:我们经过了某个房间两次,并且这两次我们拥有钥匙的情况是完全一致的。
因此,我们可以用一个三元组 (x,y,mask)(x, y, \textit{mask})(x,y,mask) 表示当前的状态,其中 (x,y)(x, y)(x,y) 表示当前所处的位置,mask\textit{mask}mask 是一个二进制数,长度恰好等于网格中钥匙的数目,mask\textit{mask}mask 的第 iii 个二进制位为 111,当且仅当我们已经获得了网格中的第 iii 把钥匙。
这样一来,我们就可以使用上述的状态进行广度优先搜索。初始时,我们把 (sx,sy,0)(\textit{sx}, \textit{sy}, 0)(sx,sy,0) 加入队列,其中 (sx,sy)(\textit{sx}, \textit{sy})(sx,sy) 为起点。在搜索的过程中,我们可以向上下左右四个方向进行扩展:
如果对应方向是空房间,那么 mask\textit{mask}mask 的值不变;
如果对应方向是第 iii 把钥匙,那么将 mask\textit{mask}mask 的第 iii 位置为 111;
如果对应方向是第 iii 把锁,那么只有在 mask\textit{mask}mask 的第 iii 位为 111 时,才可以通过。
当我们搜索到一个 mask\textit{mask}mask 每一个二进制都为 111 的状态时,说明获取了所有钥匙,此时就可以返回最短路作为答案。
代码:
class Solution:
def shortestPathAllKeys(self, grid: List[str]) -> int:
dirs = [(-1, 0), (1, 0), (0, -1), (0, 1)]
m, n = len(grid), len(grid[0])
sx = sy = 0
key_to_idx = dict()
for i in range(m):
for j in range(n):
if grid[i][j] == "@":
sx, sy = i, j
elif grid[i][j].islower():
if grid[i][j] not in key_to_idx:
idx = len(key_to_idx)
key_to_idx[grid[i][j]] = idx
q = deque([(sx, sy, 0)])
dist = dict()
dist[(sx, sy, 0)] = 0
while q:
x, y, mask = q.popleft()
for dx, dy in dirs:
nx, ny = x + dx, y + dy
if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] != "#":
if grid[nx][ny] == "." or grid[nx][ny] == "@":
if (nx, ny, mask) not in dist:
dist[(nx, ny, mask)] = dist[(x, y, mask)] + 1
q.append((nx, ny, mask))
elif grid[nx][ny].islower():
idx = key_to_idx[grid[nx][ny]]
if (nx, ny, mask | (1 << idx)) not in dist:
dist[(nx, ny, mask | (1 << idx))] = dist[(x, y, mask)] + 1
if (mask | (1 << idx)) == (1 << len(key_to_idx)) - 1:
return dist[(nx, ny, mask | (1 << idx))]
q.append((nx, ny, mask | (1 << idx)))
else:
idx = key_to_idx[grid[nx][ny].lower()]
if (mask & (1 << idx)) and (nx, ny, mask) not in dist:
dist[(nx, ny, mask)] = dist[(x, y, mask)] + 1
q.append((nx, ny, mask))
return -1