LeeCode打卡第十九天:864获取所有钥匙的最短路径

这篇博客介绍了如何在给定包含钥匙和锁的二维网格中,使用广度优先搜索算法寻找获取所有钥匙的最短路径。文章详细解释了状态表示、搜索过程以及代码实现,展示了如何在搜索过程中处理钥匙和锁的匹配。最后,给出了具体的解决方案和代码示例。
摘要由CSDN通过智能技术生成

题目:

给定一个二维网格 grid ,其中:

  • '.' 代表一个空房间
  • '#' 代表一堵
  • '@' 是起点
  • 小写字母代表钥匙
  • 大写字母代表锁

我们从起点开始出发,一次移动是指向四个基本方向之一行走一个单位空间。我们不能在网格外面行走,也无法穿过一堵墙。如果途经一个钥匙,我们就把它捡起来。除非我们手里有对应的钥匙,否则无法通过锁。

假设 k 为 钥匙/锁 的个数,且满足 1 <= k <= 6,字母表中的前 k 个字母在网格中都有自己对应的一个小写和一个大写字母。换言之,每个锁有唯一对应的钥匙,每个钥匙也有唯一对应的锁。另外,代表钥匙和锁的字母互为大小写并按字母顺序排列。

返回获取所有钥匙所需要的移动的最少次数。如果无法获取所有钥匙,返回 -1 。

示例:

输入:grid = ["@.a.#","###.#","b.A.B"]
输出:8
解释:目标是获得所有钥匙,而不是打开所有锁。
输入:grid = ["@..aA","..B#.","....b"]
输出:6

思路:

给定一个只包含空房间、墙、起点和终点的二维网格,我们可以使用广度优先搜索的方法求出起点到终点的最短路径。这是因为在最短路径上,我们最多只会经过每个房间一次。因此从起点开始,使用队列进行广度优先搜索,当第一个搜索到某个节点的时候,我们就可以得到从起点到该节点正确的最短路。

如果加上了钥匙和锁,我们应该如何解决问题呢?类似地,在最短路径上也不可能存在如下的情况:我们经过了某个房间两次,并且这两次我们拥有钥匙的情况是完全一致的。

因此,我们可以用一个三元组 (x,y,mask)(x, y, \textit{mask})(x,y,mask) 表示当前的状态,其中 (x,y)(x, y)(x,y) 表示当前所处的位置,mask\textit{mask}mask 是一个二进制数,长度恰好等于网格中钥匙的数目,mask\textit{mask}mask 的第 iii 个二进制位为 111,当且仅当我们已经获得了网格中的第 iii 把钥匙。

这样一来,我们就可以使用上述的状态进行广度优先搜索。初始时,我们把 (sx,sy,0)(\textit{sx}, \textit{sy}, 0)(sx,sy,0) 加入队列,其中 (sx,sy)(\textit{sx}, \textit{sy})(sx,sy) 为起点。在搜索的过程中,我们可以向上下左右四个方向进行扩展:

如果对应方向是空房间,那么 mask\textit{mask}mask 的值不变;

如果对应方向是第 iii 把钥匙,那么将 mask\textit{mask}mask 的第 iii 位置为 111;

如果对应方向是第 iii 把锁,那么只有在 mask\textit{mask}mask 的第 iii 位为 111 时,才可以通过。

当我们搜索到一个 mask\textit{mask}mask 每一个二进制都为 111 的状态时,说明获取了所有钥匙,此时就可以返回最短路作为答案。


代码:

class Solution:

    def shortestPathAllKeys(self, grid: List[str]) -> int:

        dirs = [(-1, 0), (1, 0), (0, -1), (0, 1)]

        m, n = len(grid), len(grid[0])

        sx = sy = 0

        key_to_idx = dict()

       

        for i in range(m):

            for j in range(n):

                if grid[i][j] == "@":

                    sx, sy = i, j

                elif grid[i][j].islower():

                    if grid[i][j] not in key_to_idx:

                        idx = len(key_to_idx)

                        key_to_idx[grid[i][j]] = idx

        q = deque([(sx, sy, 0)])

        dist = dict()

        dist[(sx, sy, 0)] = 0

        while q:

            x, y, mask = q.popleft()

            for dx, dy in dirs:

                nx, ny = x + dx, y + dy

                if 0 <= nx < m and 0 <= ny < n and grid[nx][ny] != "#":

                    if grid[nx][ny] == "." or grid[nx][ny] == "@":

                        if (nx, ny, mask) not in dist:

                            dist[(nx, ny, mask)] = dist[(x, y, mask)] + 1

                            q.append((nx, ny, mask))

                    elif grid[nx][ny].islower():

                        idx = key_to_idx[grid[nx][ny]]

                        if (nx, ny, mask | (1 << idx)) not in dist:

                            dist[(nx, ny, mask | (1 << idx))] = dist[(x, y, mask)] + 1

                            if (mask | (1 << idx)) == (1 << len(key_to_idx)) - 1:

                                return dist[(nx, ny, mask | (1 << idx))]

                            q.append((nx, ny, mask | (1 << idx)))

                    else:

                        idx = key_to_idx[grid[nx][ny].lower()]

                        if (mask & (1 << idx)) and (nx, ny, mask) not in dist:

                            dist[(nx, ny, mask)] = dist[(x, y, mask)] + 1

                            q.append((nx, ny, mask))

        return -1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值