YOLOv8改进实战 | 更换主干网络Backbone之2023最新模型LSKNet,旋转目标检测SOTA

27 篇文章 1 订阅 ¥59.90 ¥99.00
本文介绍了YOLOv8系列中采用LSKNet轻量化网络结构作为Backbone,以减少计算量和提高检测速度。通过详细阐述LSKNet的原理和代码实现,包括网络添加、注册、配置yaml文件及模型训练,展示了LSKNet在目标检测尤其是遥感图像检测中的优势。
摘要由CSDN通过智能技术生成

在这里插入图片描述


前言

传统的YOLOv8系列中,Backbone采用的是较为复杂的C2f网络结构,这使得模型计算量大幅度的增加,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。为了解决这个问题,本章节通过采用LSKNet轻量化主干网络作为Backbone的基础结构,从而在保证检测性能的同时,将网络结构精简到最小,大大减小了模型的参数量和计算量。

一、LSKNet

Large Selective Kernel Network for Remote Sensing Object Detectio

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

w94ghz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值