
前言
传统的YOLOv8系列中,Backbone采用的是较为复杂的C2f网络结构,这使得模型计算量大幅度的增加,检测速度较慢,应用受限,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂的模型时难以被应用的。为了解决这个问题,本章节通过采用LSKNet轻量化主干网络作为Backbone的基础结构,从而在保证检测性能的同时,将网络结构精简到最小,大大减小了模型的参数量和计算量。
目录
一、LSKNet
Large Selective Kernel Network for Remote Sensing Object Detection
Pytorch code:LSKNet

论文的主要创新点在于提出了一种新的遥感对象检测方法一LSKNet,LSKNet通过动态调整感受野和使用大型深度核和空间选择机制,有效地处理了遥感图像中的广泛上下文和多尺度目标。这使得LSKNet在遥感对象检测中取得了最先进的性能,证明了其方法的有效性。

本文介绍了YOLOv8系列中采用LSKNet轻量化网络结构作为Backbone,以减少计算量和提高检测速度。通过详细阐述LSKNet的原理和代码实现,包括网络添加、注册、配置yaml文件及模型训练,展示了LSKNet在目标检测尤其是遥感图像检测中的优势。
订阅专栏 解锁全文
2543

被折叠的 条评论
为什么被折叠?



