目录
参数检验(Parameter Test)是指对参数的平均值、方差、比率等特征进行的统计检验。参数检验一般假设统计总体的具体分布为已知,但是其中一些参数或者取值范围不确定,分析的主要目的是估计这些未知参数的取值,或者对这些参数进行假设检验。参数检验不仅能够对总体的特征参数进行推断,还能够对两个或多个总体参数进行比较。常用的参数检验包括单一样本T检验、独立样本T检验、配对样本T检验、单一样本方差和双样本方差的假设检验等。
4.1单一样本T检验
单一样本T简单是假设检验中最基本也是最常用的方法之一。与所有的假设检验一样,其依据的基本原理也是统计学中的“最小概率反证法”原理。通过单一样本T检验,我们可以实现样本均值和总体均值的比较。检验的基本程序是首先提出原假设检和备择假设,规定好检验的显著水平,然后确定适当的检验统计量,并计算检验统计量的值。最后依据计算值和临界值的比较结果做出统计决策。
数据(案例4.1)是河南省某高校5年前对大四学生体检时,发现学生的平均体重是67.4KG.最近又抽查测量了该校53名大四学生的体重。试用单一样本T检验的操作命令判断该校大四学生的体重与5年前相比是否有显著差异。

ttest weight=67.4

我们可以看出一共有53个样本参与了假设检验,样本的均值是58.61887、标准误是0.7094891、标准差是5.165159、95%置信度区间是[57.19517 60.04256]。样本的T值是-12.3767、自由度是52,Pr(|T|>|t|)=0.0000,远小于0.05,需要拒绝原假设,也就是说该校大四学生的体重与五年前相比有显著差异。
案例延伸
我们要把显著性水平跳到1%,也就是说置信水平为99%。
ttest weight=67.4,level(99)

从上面得分系结果中可以看出与95%置信水平不同得地方在于置信区间得到了进一步的放大,这是正常的结果,因为

本文详细介绍了Stata中参数检验的应用,涵盖了单一样本T检验、独立样本T检验、配对样本T检验、单一样本方差及双样本方差的假设检验。通过实例分析,讨论了如何在不同置信水平下进行假设检验,并展示了如何在遇到异方差性时调整检验方法。
最低0.47元/天 解锁文章
2448

被折叠的 条评论
为什么被折叠?



