第4章 Stata参数检验

本文详细介绍了Stata中参数检验的应用,涵盖了单一样本T检验、独立样本T检验、配对样本T检验、单一样本方差及双样本方差的假设检验。通过实例分析,讨论了如何在不同置信水平下进行假设检验,并展示了如何在遇到异方差性时调整检验方法。

       

目录

4.1单一样本T检验

案例延伸

4.2独立样本T检验

案例延伸

1.改变置信水平

2.在异方差假定条件下进行假设检验

4.3配对样本T检验

案例延伸

1.改变置信水平

4.4单一样本方差的假设检验

案例延伸

4.5双样本方差的假设检验


参数检验(Parameter Test)是指对参数的平均值、方差、比率等特征进行的统计检验。参数检验一般假设统计总体的具体分布为已知,但是其中一些参数或者取值范围不确定,分析的主要目的是估计这些未知参数的取值,或者对这些参数进行假设检验。参数检验不仅能够对总体的特征参数进行推断,还能够对两个或多个总体参数进行比较。常用的参数检验包括单一样本T检验、独立样本T检验、配对样本T检验、单一样本方差和双样本方差的假设检验等。

4.1单一样本T检验

        单一样本T简单是假设检验中最基本也是最常用的方法之一。与所有的假设检验一样,其依据的基本原理也是统计学中的“最小概率反证法”原理。通过单一样本T检验,我们可以实现样本均值和总体均值的比较。检验的基本程序是首先提出原假设检和备择假设,规定好检验的显著水平,然后确定适当的检验统计量,并计算检验统计量的值。最后依据计算值和临界值的比较结果做出统计决策。

        数据(案例4.1)是河南省某高校5年前对大四学生体检时,发现学生的平均体重是67.4KG.最近又抽查测量了该校53名大四学生的体重。试用单一样本T检验的操作命令判断该校大四学生的体重与5年前相比是否有显著差异。

ttest weight=67.4

        我们可以看出一共有53个样本参与了假设检验,样本的均值是58.61887、标准误是0.7094891、标准差是5.165159、95%置信度区间是[57.19517  60.04256]。样本的T值是-12.3767、自由度是52,Pr(|T|>|t|)=0.0000,远小于0.05,需要拒绝原假设,也就是说该校大四学生的体重与五年前相比有显著差异。

案例延伸

        我们要把显著性水平跳到1%,也就是说置信水平为99%。

ttest weight=67.4,level(99)

        从上面得分系结果中可以看出与95%置信水平不同得地方在于置信区间得到了进一步的放大,这是正常的结果,因为

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值