保存模型:
# 定义函数,保存最新和最佳模型
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""
Save the training model
"""
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
# 调用时:
save_checkpoint({
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best, filename=os.path.join(args.save_dir, 'model.th'))
读取模型:
# 调用保存的最佳模型的准确率输出
resume = 'model_best.pth.tar'
checkpoint = torch.load(resume)
best_acc1 = checkpoint['best_prec1']
print('best acc:{0}'.format(best_acc1))