求二维数组中的鞍点(C++) kkmd66

这段代码实现了一个寻找矩阵中马鞍点的算法。它遍历矩阵的每一行,找到每行的最小值及其列索引,然后在该列中寻找最大值,如果最大值与最小值所在的行相同,就找到了一个马鞍点并输出其坐标。示例输入和输出展示了如何处理3x3矩阵的情况。
摘要由CSDN通过智能技术生成

思路

行遍历,找每行最小值,记录最小值列数,找该列数最大值,记录最大值行数;
如果最大值行数等于行遍历的行数,则输出坐标点。

Description:

如果矩阵A中存在这样的一个元素A[i,j]满足条件:A[i,j]是第i行中值最小的元素,且又是第j列中值最大的元素,则称之为该矩阵的一个马鞍点。请编程计算出m*n的矩阵A的所有马鞍点的坐标(1<=i,j<=n)。

Input:

输入m,n

然后输入数组中的每个元素

Output:

输出m*n的矩阵A的所有马鞍点坐标

Sample Input:

3 3
1 5 3
5 2 6
7 6 9

Sample Output:

3 2

#include <iostream>
#include "vector"

using namespace std;

/**
 * kkmd66
 * @return
 */

int main() {

    int m, n;
    cin >> m >> n;

    //储存
    vector<vector<int>> matrix(m);
    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            int temp;
            cin >> temp;
            matrix[i].push_back(temp);
        }
    }

    //坐标
    int result_h, result_l;

    //找马鞍点
    for (int i = 0; i < m; ++i) {

        //找出第i行最小值
        int min_m = matrix[i][0], min_l=0;
        for (int j = 0; j < n; ++j) {
            if (matrix[i][j] < min_m) {
                min_m = matrix[i][j];
                min_l = j;
            }
        }

        //找出第i行最小值所在列的最大值
        int max_n = matrix[0][min_l], max_h=0;
        for (int j = 0; j < m; ++j) {
            if (matrix[j][max_h] > max_n) {
                max_n = matrix[j][max_h];
                max_h = j;
            }
        }

        //如果最小值的行数与最大值的行数相同
        if (i == max_h) {
            result_h = i + 1;
            result_l = min_l + 1;
            //输出
            cout << result_h << " " << result_l;
        }

    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值