创新点:
第一步融合IMU-里程计建立机器人运动模型;
第二步联合激光雷达观测信息进行二次融合,优化建议分布函数;
第三步改进粒子重采样策略,减缓粒子耗散问题。
(1)对粒子权值进行降序排序。
(2)构造分布函数,求出粒子分布函数值。粒子权重越小,对应分布函数值越大。分布函数值在【1/2,1】之间的粒子权重小,与机器人实际位姿偏差较大。保留分布函数值小于1/2的粒子。
(3)根据分布函数值进行筛选,去除权值排名前三的粒子,然后任意选取一个粒子,设其在新粒子集中对应的位置为A,分布函数值为1/2的粒子在新粒子集中对应的位置为B,最后哦在【A,B】之间执行重采样。
知识点:
RBPF-SLAM算法步骤:
(1)粒子重要性采样。利用给定的重要性建议分布采样得到N个初始粒子,每个粒子对应一个权值。
(2)粒子权值计算。根据重要性采样原则,粒子的权重定义为建议分布与目标分布的比值。
(3)重采样。根据粒子权值的大小,重新筛选粒子,淘汰小权值粒子,复制大权值粒子。
(4)状态估计与地图更新。