论文笔记——移动机器人多传感器融合的SLAM新方法

创新点:

第一步融合IMU-里程计建立机器人运动模型;

第二步联合激光雷达观测信息进行二次融合,优化建议分布函数;

第三步改进粒子重采样策略,减缓粒子耗散问题。

    (1)对粒子权值进行降序排序。

    (2)构造分布函数,求出粒子分布函数值。粒子权重越小,对应分布函数值越大。分布函数值在【1/2,1】之间的粒子权重小,与机器人实际位姿偏差较大。保留分布函数值小于1/2的粒子。

    (3)根据分布函数值进行筛选,去除权值排名前三的粒子,然后任意选取一个粒子,设其在新粒子集中对应的位置为A,分布函数值为1/2的粒子在新粒子集中对应的位置为B,最后哦在【A,B】之间执行重采样。

知识点:

RBPF-SLAM算法步骤:

(1)粒子重要性采样。利用给定的重要性建议分布采样得到N个初始粒子,每个粒子对应一个权值。

(2)粒子权值计算。根据重要性采样原则,粒子的权重定义为建议分布与目标分布的比值。

(3)重采样。根据粒子权值的大小,重新筛选粒子,淘汰小权值粒子,复制大权值粒子。

(4)状态估计与地图更新。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值