前言
这一章主要介绍机器学习在金融领域一个重要应用:客户违约预测模型的搭建,其所用到原理为机器学习中的决策树模型。通过本章的学习,您能了解在信息时代下金融风险控制的新手段,并对机器学习有一个初步的了解。
1. 机器学习在金融领域的应用
说到机器学习(Machine Learning),有的读者可能会感觉比较陌生,然而说到AlphaGo这一击败了世界顶级围棋选手的智能机器人,想必大家多少都有些耳闻。机器学习便是模拟或实现人类的学习行为,以探寻规律或者获得新的技能,机器学习某种程度上可以说是人工智能的核心。
举个简单的例子,如下图所示,该机器学习的目的就是要从一堆散点中寻找到这些散点背后的规律。
本章主要介绍一下客户违约预测模型,作为机器学习在金融领域应用的典型案例。在传统金融领域,往往存在两方角色,一方为借钱的借款方,另一方则为借钱给别人的贷款方,而作为贷款方则非常关心借款方是否会违约,即借钱不还。有的借款方可能完全就是抱着借钱不还的心态去借的资金,而对于这些客户,则需要搭建一套客户违约预测模型,根据借款人的各方面特征,来训练出合适的模型进行违约概率预测,从而在源头上拒绝这些潜在违约客户。
可用来搭建客户违约预测模型的方法有很多,如逻辑回归模型、决策树模型、神经网络模型等,这里则使用一个在商业上用的较多的决策树模型。
2. 决策树模型的基本原理
2.1 决策树模型简介
决策树模型是机器学习各种算法模型中比较好理解的一个模型,它的基本原理便是通过对一系列问题进行if/else的推导,最终实现相关决策。
下图便是一个典型的决策树模型,首先判断是否曾经违约: