使用Ollama部署GLM-4-9B

Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。Ollama支持多种操作系统,包括macOS、Windows、Linux以及Docker,适用性广泛。通过Ollama,用户可以方便地部署和运行GLM-4-9B 等开源的大语言模型。此外,Ollama还提供了包括网页、桌面应用和终端界面在内的多种互动方式,方便用户使用和管理这些模型。

一、模型下载

受显存限制,本篇内容使用的是GGUF模型

模型下载

glm-4-9b-chat-GGUF

modelscope download --model=LLM-Research/glm-4-9b-chat-GGUF --local_dir . glm-4-9b-chat.Q5_K.gguf

二、Linux环境使用Ollama

modelscope download --model=modelscope/ollama-linux --local_dir ./ollama-linux
cd ollama-linux
sudo chmod 777 ./ollama-modelscope-install.sh
./ollama-modelscope-install.sh

启动Ollama服务

ollama serve

创建ModelFile

复制模型路径,创建名为“ModelFile”的meta文件,内容如下:

FROM /mnt/workspace/glm-4-9b-chat.Q5_K.gguf

# set parameters
PARAMETER stop "<|system|>"
PARAMETER stop "<|user|>"
PARAMETER stop "<|assistant|>"

TEMPLATE """[gMASK]<sop>{{ if .System }}<|system|>
{{ .System }}{{ end }}{{ if .Prompt }}<|user|>
{{ .Prompt }}{{ end }}<|assistant|>
{{ .Response }}"""

创建自定义模型

使用ollama create命令创建自定义模型


ollama create myglm4 --file ModelFile

运行模型


ollama run myglm4

👇点击关注公众号获取

更多技术信息~

### 如何从多个仓库拉取不同版本的 LLaMA 模型 为了从不同的仓库中获取多种版本的 LLaMA 模型,可以采用 Git 工具以及遵循各模型发布者所提供的具体指南。对于提到的具体模型: #### 获取 `EntropyYue/longwriter-glm4:9b` 针对此特定变种的 GLM-4 模型,假设其托管于 GitHub 或类似的Git平台,则可以通过克隆对应的仓库来获得最新版源码及其依赖项。 ```bash git clone https://github.com/EntropyYue/longwriter-glm4.git cd longwriter-glm4 ``` 考虑到该模型可能基于GLM架构并利用了TensorRT优化[^2],建议参照相似项目的部署脚本来调整环境配置以适应目标硬件特性。 #### 下载 `llama3.3` 版本 由于 "llama3.3" 并不是一个标准命名,在实际操作前需确认确切名称与位置。通常情况下,官方LLaMA系列或其他开源实现会在README文档里提供详细的安装说明链接或直接给出预训练权重文件下载路径。 如果这是一个自定义标签或是实验分支的一部分,请访问原始作者提供的资源页面寻找更多信息。 #### 安装 `gemma:7b` 对于名为"GEMMA" 的7B参数量级模型而言,同样先定位至相应的存储库地址执行常规的Git命令完成同步工作。 ```bash git clone https://example.com/path/to/gemma-repo.git cd gemma-repo ``` 注意这里使用的URL仅为示意;真实场景下应替换为真实的远程仓库网址。之后依据项目内附带的setup.sh或者其他初始化脚本进一步处理。 #### 部署 `deepseek-coder-v2:16b` 最后,关于DeepSeek Coder V2这一较大规模的语言模型实例,除了基本的代码复制外,还涉及到复杂的依赖关系管理和服务启动流程。这往往意味着不仅限于简单的Git操作,还需要按照官方指导准备必要的运行时组件,比如通过pip安装Python包、设置CUDA环境变量等。 ```bash # 假设已经位于正确的目录结构之下 pip install -r requirements.txt export CUDA_HOME=/usr/local/cuda source activate your_env_name # 如果适用的话 ``` 以上每一步骤都应当严格依照各个模型维护团队所发布的指引来进行,确保兼容性和稳定性的同时也便于后续更新维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT大头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值