Mac下小智AI本地环境部署

可以进行聊天、编写程序、播放歌曲等等的小智语音聊天小助手,在Mac环境下修改源代码,值得拥有。本篇内容主要讲解Mac下环境的搭建,WebSocket的修改。注:环境python3.12.0、ESP-IDF5.4.0、开发板ESP32S3。


1.Git安装

Git
官网下载
安装Mac系统的Git软件。

在这里插入图片描述

2.Python安装

Python环境:
国内高速下载
版本要求Python3.10以上,建议选择Python3.12版本。在这里插入图片描述

3.VSCode安装

VSCode
官网下载
可下载通用版,Intel和M系列芯片支持安装。
在这里插入图片描述

3.1 简体中文

中文语言包安装,安装简体中文,然后重启VSCode。
在这里插入图片描述

3.2 ESP-IDF配置

ESP-IDF插件安装
在这里插入图片描述

ESP-IDF下载与配置
在这里插入图片描述
选择ADVENCED,自定义选择安装。
在这里插入图片描述
选择国内高速下载、版本可以选择5.4.0或5.4.1。
在这里插入图片描述
受网络的影响,需要先进行下载,下载过程尽量不要中止,下载包含所需要的ESP环境、编译工具等等。

4.环境变量配置

esp-idf本地下载所在位置
在这里插入图片描述
“Command+Shift+.”,显示隐藏的文件或文件夹
在这里插入图片描述
添加系统环境变量,方便后续命令行操作。
在这里插入图片描述

sudo vim ~/.zshrc
export IDF_PATH=~/esp/v5.4/esp-idf
export PATH="$PATH:$HOME/.espressif/tools/xtensa-esp-elf/esp-14.2.0_20241119/xtensa-esp-elf/bin"
export PATH="$PATH:$HOME/.espressif/tools/esp32ulp-elf/2.38_20240113/esp32ulp-elf/bin"
export PATH="$PATH:$HOME/.espressif/tools/openocd-esp32/v0.12.0-esp32-20241016/openocd-esp32/bin"
export PATH="$PATH:$HOME/.espressif/python_env/idf5.4_py3.12_env/bin"

配置完成后,执行以下命令生效。

source ~/.zshrc 

检查配置

echo $IDF_PATH                # 输出 ESP-IDF 路径
xtensa-esp32-elf-gcc --version # 检查编译器是否识别
python --version              # 确认 Python 3.12.0

进入esp-idf目录,第一次操作,执行安装命令:

./install.sh

然后执行export.sh脚本,显示以下内容表示成功。

. ./export.sh

在这里插入图片描述

5.参数配置与编译

5.1 源代码下载

打开terminal终端执行git命令:

git clone https://github.com/78/xiaozhi-esp32.git

5.2 VSCode加载项目

打开下载的XIAOZHI-ESP32源代码文件夹,VSCode加载过程中,会提示安装C++扩展选择安装,ESP-IDF加载等,中途不要取消。
在这里插入图片描述

5.3 硬件参数配置

idf.py命令操作,进入esp-idf文件夹,再次执行export.sh脚本。

. ./export.sh

进入源代码目录下

cd /xxx/xx/xiaozhi-esp32

在这里插入图片描述

项目构建

idf.py build

在这里插入图片描述
在这里插入图片描述

芯片类型设置

idf.py set-target esp32s3

在这里插入图片描述
在这里插入图片描述

菜单配置

idf.py menuconfig

上下键控制移动,回车键确认
在这里插入图片描述
连接类型Connection Type选择WebSocket。
在这里插入图片描述
修改websockt地址可以为自己本地的或个人部署的,后面加上/xiaozhi/v1。
在这里插入图片描述
在这里插入图片描述
Board Type可以根据自己的版型选择。
在这里插入图片描述
屏幕分辨率根据自己的OLED尺寸选择。
在这里插入图片描述
按“S”保存配置,然后按ESC回到上一级。

唤醒词的修改。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存后退出。

6.服务端配置

6.1 MiniConda安装

Intel芯片下载安装脚本

curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh

M系列芯片下载安装脚本

curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh

找到下载脚本的位置,安装脚本
Intel芯片

bash Miniconda3-latest-MacOSX-x86——64.sh

或者M系列芯片

bash Miniconda3-latest-MacOSX-arm64.sh

按提示阅读许可协议,输入 yes 同意。
安装路径(默认在 ~/miniconda3)。
在这里插入图片描述
安装完后,执行

source ~/miniconda3/bin/activate

然后执行初始化

conda init --all

6.2 服务端源代码下载

下载xiaozhi-esp32-server
github访问

创建虚拟环境,如何之前创建过,通过conda命令移除。
conda remove -n xiaozhi-esp32-server --all -y

创建虚拟环境,名称为esp32-server。

conda create -n esp32-server python=3.12 -y

激活虚拟环境

conda activate esp32-server

退出虚拟环境(非必需)

conda deactivate

6.3 添加清华源通道

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge

安装libopus和ffmpeg

conda install libopus -y
conda install ffmpeg -y

6.3 配置API Key

在这里插入图片描述
没有data文件夹需要创建并拷贝config.yaml,通过termial终端命令行修改为.config.yaml

mv config.yaml .config.yaml

在这里插入图片描述
修改配置文件,添加API Key。
model.pt下载可以选择阿里魔塔下载,速度较快。
models文件夹下需要放置model.pt文件。
在这里插入图片描述

7.测试

构建项目

idf.py build

连接硬件esp32s3
烧录

idf.py flash

python app.py启动websocket,不要关闭终端。

python app.py

在这里插入图片描述

8.参考资料

[1]miniconda配置,创建虚拟环境
[2]小智AI聊天机器人百科全书
[3]小智官方文档服务器端配置

9.声明

本篇文章在小智官方文档的学习下,Mac系统上配置,将踩过的坑进行总结、经验分享。

### 小AI服务端部教程与配置指南 #### 一、硬件环境评估 为了成功部AI助手,需先确认个人电脑的硬件性能是否满足需求。通常情况下,AI模型对CPU、内存以及显卡的要求较高。具体可参考以下标准[^1]: - **处理器(CPU)**:建议至少配备Intel i7或AMD Ryzen 7级别的多核心处理器。 - **内存(RAM)**:推荐8GB以上;如果计划加载大型语言模型,则需要16GB甚至更高。 - **图形处理单元(GPU)**:对于涉及深度学习推理的任务,NVIDIA系列显卡能够显著加速运算过程。 #### 二、软件依赖安装 完成初步的硬件检测之后,进入实际操作阶段前还需准备必要的开发工具链及框架库文件。以下是几个重要环节描述[^2]: - 安装Docker引擎版本号应不低于v20.10.x,通过命令`docker --version`验证当前状态; - 使用官方文档指导创建自定义镜像项目目录结构并编写对应的Dockerfile脚本示例如下所示: ```dockerfile FROM python:3.9-slim-buster WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["python", "server.py"] ``` 上述代码片段展示了如何构建一个基础Python应用容器化流程. #### 三、启动参数设置 当所有前期准备工作就绪后,可以利用下面这条典型指令来初始化后台进程模式下的实例运行状况监控机制[-d选项表示分离前台显示界面]: ```bash docker run -d \ --name qwen-deepseek-instance \ -p 5000:5000 \ -v $(pwd)/data:/app/data \ your_custom_image_tag ``` 此部分特别强调了端口映射(-p标记)的重要性以便外部客户端访问内部API接口资源. --- #### 四、注意事项 尽管本地化方案提供了诸多便利之处,但仍存在一些潜在风险因素需要注意规避。例如数据安全防护措施不足可能导致敏感信息泄露等问题发生。因此,在整个实施过程中始终要把加强访问控制策略放在首位考虑范围之内. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喾颛顼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值