§5 勒贝格积分
5.1 非负简单函数的L积分
5.1.1 定义
Define \textbf{Define} Define
- 设可测集 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn, φ ( x ) \varphi(x) φ(x) 为 E E E 上的非负简单函数, E = ⋃ i = 1 k E i ( ∀ i ≠ j : E i ∩ E j = ϕ ) E=\bigcup\limits_{i=1}^kE_i(\forall i\ne j:E_i\cap E_j=\phi) E=i=1⋃kEi(∀i=j:Ei∩Ej=ϕ),由特征函数(又称示性函数) X E ( x ) = { 1 , x ∈ E 0 , x ∉ E \mathcal{X}_E(x)=\left\{\begin{array}{l} 1,x\in E\\0,x\not\in E\\ \end{array}\right. XE(x)={1,x∈E0,x∈E 表示为
φ ( x ) = { c 1 , x ∈ E 1 c 2 , x ∈ E 2 ⋯ c k , x ∈ E k = ∑ i = 1 k c i X E i ( x ) \varphi(x)=\left\{\begin{array}{l} c_1,x\in E_1\\ c_2,x\in E_2\\ \cdots\\ c_k,x\in E_k\\ \end{array}\right. =\sum_{i=1}^{k}c_i\mathcal{X}_{E_i}(x) φ(x)=⎩ ⎨ ⎧c1,x∈E1c2,x∈E2⋯ck,x∈Ek=i=1∑kciXEi(x)
则 φ ( x ) \varphi(x) φ(x) 为 E E E 上的勒贝格积分 (简称 L L L - 积分) 定义为
∫ E φ ( x ) d x = ∑ i = 1 k c i m ( E i ) \int_E\varphi(x)\mathrm{d}x=\sum_{i=1}^{k}c_im(E_i) ∫Eφ(x)dx=i=1∑kcim(Ei)
- 设 A ⊆ E A\subseteq E A⊆E,则
∫ A φ ( x ) d x = ∫ A φ ∣ A ( x ) d x = ∑ i = 1 k c i m ( A ∩ E i ) \int_A\varphi(x)\mathrm{d}x=\int_{A}\varphi|_A(x)\mathrm{d}x=\sum_{i=1}^kc_im(A\cap E_i) ∫Aφ(x)dx=∫Aφ∣A(x)dx=i=1∑kcim(A∩Ei)
5.1.2 性质
5.1.2.1 积分线性性质
Theorem \textbf{Theorem} Theorem
设 f , g f,g f,g 为可测集 E E E 上的非负简单函数, ∀ α , β ⩾ 0 : \forall\alpha,\beta\geqslant 0: ∀α,β⩾0:
∫ E [ α f ( x ) + β g ( x ) ] d x = α ∫ E f ( x ) d x + β ∫ E g ( x ) d x \int_E[\alpha f(x)+\beta g(x)]\mathrm{d}x=\alpha\int_E f(x)\mathrm{d}x+\beta\int_Eg(x)\mathrm{d}x ∫E[αf(x)+βg(x)]dx=α∫Ef(x)dx+β∫Eg(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
(1) 由定义易得
∫
E
α
f
(
x
)
d
x
=
∑
i
=
1
k
α
⋅
c
i
m
(
E
i
)
=
α
∑
i
=
1
k
c
i
m
(
E
i
)
=
α
∫
E
f
(
x
)
d
x
\begin{align*} \int_E\alpha f(x)\mathrm{d}x &=\sum_{i=1}^k\alpha\cdot c_im(E_i) \\&=\alpha\sum_{i=1}^kc_im(E_i) \\&=\alpha\int_Ef(x)\mathrm{d}x \end{align*}
∫Eαf(x)dx=i=1∑kα⋅cim(Ei)=αi=1∑kcim(Ei)=α∫Ef(x)dx
(2) 设两组互不相交的可测子集
⋃
i
=
1
k
E
i
=
⋃
j
=
1
l
E
~
j
=
E
\displaystyle\bigcup_{i=1}^kE_i=\bigcup_{j=1}^l\tilde{E}_j=E
i=1⋃kEi=j=1⋃lE~j=E,则
⋃
j
=
1
l
(
E
i
∩
E
~
j
)
=
E
i
,
⋃
i
=
1
k
(
E
i
∩
E
~
j
)
=
E
j
\bigcup_{j=1}^l(E_i\cap\tilde{E}_j)=E_i\ ,\ \bigcup_{i=1}^k(E_i\cap\tilde{E}_j)=E_j
j=1⋃l(Ei∩E~j)=Ei , i=1⋃k(Ei∩E~j)=Ej
设非负简单函数
f
(
x
)
=
∑
i
=
1
k
c
i
X
E
i
(
x
)
,
g
(
x
)
=
∑
j
=
1
l
d
j
X
E
~
j
(
x
)
f(x)=\sum_{i=1}^kc_i\mathcal{X}_{E_i}(x)\ ,\ g(x)=\sum_{j=1}^ld_j\mathcal{X}_{\tilde{E}_j}(x)
f(x)=i=1∑kciXEi(x) , g(x)=j=1∑ldjXE~j(x)
则
f
(
x
)
+
g
(
x
)
=
c
i
+
d
j
,
x
∈
E
i
∩
E
~
j
=
∑
i
,
j
=
1
k
,
l
(
c
i
+
d
j
)
X
E
i
∩
E
~
j
(
x
)
\begin{align*} f(x)+g(x)&=c_i+d_j,x\in E_i\cap \tilde{E}_j \\&=\sum_{i,j=1}^{k,l}(c_i+d_j)\mathcal{X}_{E_i\cap\tilde{E}_j}(x) \end{align*}
f(x)+g(x)=ci+dj,x∈Ei∩E~j=i,j=1∑k,l(ci+dj)XEi∩E~j(x)
为非负简单函数,于是
I
=
∫
E
[
f
(
x
)
+
g
(
x
)
]
d
x
=
∑
i
,
j
=
1
k
,
l
(
c
i
+
d
j
)
m
(
E
i
∩
E
~
j
)
=
∑
i
,
j
=
1
k
,
l
c
i
m
(
E
i
∩
E
~
j
)
+
∑
i
,
j
=
1
k
,
l
d
j
m
(
E
i
∩
E
~
j
)
=
∑
i
=
1
k
c
i
(
∑
j
=
1
l
m
(
E
i
∩
E
~
j
)
)
+
∑
j
=
1
l
d
j
(
∑
i
=
1
k
m
(
E
i
∩
E
~
j
)
)
=
∑
i
=
1
k
c
i
m
(
E
i
)
+
∑
j
=
1
l
d
j
m
(
E
~
j
)
=
∫
E
f
(
x
)
d
x
+
∫
E
g
(
x
)
d
x
\begin{align*} I&=\int_E[f(x)+g(x)]\mathrm{d}x \\&=\sum_{i,j=1}^{k,l}(c_i+d_j)m(E_i\cap\tilde{E}_j) \\&=\sum_{i,j=1}^{k,l}c_im(E_i\cap\tilde{E}_j)+\sum_{i,j=1}^{k,l}d_jm(E_i\cap\tilde{E}_j) \\&=\sum_{i=1}^{k}c_i\left(\sum_{j=1}^lm(E_i\cap\tilde{E}_j)\right)+\sum_{j=1}^ld_j\left(\sum_{i=1}^km(E_i\cap\tilde{E}_j)\right) \\&=\sum_{i=1}^{k}c_im(E_i)+\sum_{j=1}^ld_jm(\tilde{E}_j) \\&=\int_Ef(x)\mathrm{d}x+\int_Eg(x)\mathrm{d}x \end{align*}
I=∫E[f(x)+g(x)]dx=i,j=1∑k,l(ci+dj)m(Ei∩E~j)=i,j=1∑k,lcim(Ei∩E~j)+i,j=1∑k,ldjm(Ei∩E~j)=i=1∑kci(j=1∑lm(Ei∩E~j))+j=1∑ldj(i=1∑km(Ei∩E~j))=i=1∑kcim(Ei)+j=1∑ldjm(E~j)=∫Ef(x)dx+∫Eg(x)dx
综合(1)(2)得证.
5.1.2.2 集合运算性质
Theorem \textbf{Theorem} Theorem
设 f f f 为非负简单函数, A , B ⊆ E , A ∩ B = ϕ A,B\subseteq E,A\cap B=\phi A,B⊆E,A∩B=ϕ
∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x=\int_Af(x)\mathrm{d}x+\int_ Bf(x)\mathrm{d}x ∫A∪Bf(x)dx=∫Af(x)dx+∫Bf(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
∫ A ∪ B f ( x ) d x = ∑ i = 1 k c i m [ ( A ∪ B ) ∩ E i ] = ∑ i = 1 k c i [ m ( A ∩ E i ) + m ( B ∩ E i ) ] = ∫ A f ( x ) d x + ∫ B f ( x ) d x \begin{align*} \int_{A\cup B}f(x)\mathrm{d}x&=\sum_{i=1}^{k}c_im[(A\cup B)\cap E_i] \\&=\sum_{i=1}^{k}c_i[m(A\cap E_i)+m(B\cap E_i)] \\&=\int_Af(x)\mathrm{d}x+\int_Bf(x)\mathrm{d}x \end{align*} ∫A∪Bf(x)dx=i=1∑kcim[(A∪B)∩Ei]=i=1∑kci[m(A∩Ei)+m(B∩Ei)]=∫Af(x)dx+∫Bf(x)dx
5.2 非负可测函数的L积分
5.2.1 定义
Define \textbf{Define} Define
设 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn, f f f 为 E E E 上非负可测函数, φ ( x ) \varphi(x) φ(x) 是 E E E 上不超过 f ( x ) f(x) f(x) 的非负简单函数,则勒贝格积分定义为
∫ E f ( x ) d x = sup ∀ x ∈ E : 0 ⩽ φ ⩽ f { ∫ E φ ( x ) d x } ∈ [ 0 , + ∞ ] \int_Ef(x)\mathrm{d}x=\sup_{\forall x\in E:0\leqslant\varphi\leqslant f}\left\{\int_E\varphi(x)\mathrm{d}x\right\}\in[0,+\infty] ∫Ef(x)dx=∀x∈E:0⩽φ⩽fsup{∫Eφ(x)dx}∈[0,+∞]
若 ∫ E f ( x ) d x < + ∞ \int_Ef(x)\mathrm{d}x<+\infty ∫Ef(x)dx<+∞,则称 f ( x ) f(x) f(x) 在 E E E 上勒贝格可积.设 A ⊆ E A\subseteq E A⊆E,则
∫ A f ( x ) d x = ∫ A f ∣ A ( x ) d x = ∫ E f ( x ) X A ( x ) d x \int_Af(x)\mathrm{d}x=\int_Af\mid_A(x)\mathrm{d}x=\int_Ef(x)\mathcal{X}_A(x)\mathrm{d}x ∫Af(x)dx=∫Af∣A(x)dx=∫Ef(x)XA(x)dx
5.2.2 性质
5.2.2.1 零测集性质
Theorem \textbf{Theorem} Theorem
若 m ( E ) = 0 m(E)=0 m(E)=0,则 ∫ E f ( x ) d x = 0 \int_Ef(x)\mathrm{d}x=0 ∫Ef(x)dx=0
Proof: \color{blue}\textbf{Proof:} Proof:
由定义易证
5.2.2.2 单调性
Theorem \textbf{Theorem} Theorem
设 E ∈ M E\in\mathscr{M} E∈M, f , g f,g f,g 为非负可测函数
- 若 f ( x ) ⩽ g ( x ) a.e. x ∈ E f(x)\leqslant g(x)\ \text{a.e.}\ x\in E f(x)⩽g(x) a.e. x∈E,则
∫ E f ( x ) d x ⩽ ∫ E g ( x ) d x g ∈ L ( E ) ⇒ f ∈ L ( E ) \int_Ef(x)\mathrm{d}x\leqslant\int_Eg(x)\mathrm{d}x \\g\in L(E)\Rightarrow f\in L(E) ∫Ef(x)dx⩽∫Eg(x)dxg∈L(E)⇒f∈L(E)- 若 f ( x ) = g ( x ) a.e. x ∈ E f(x)=g(x)\ \text{a.e.}\ x\in E f(x)=g(x) a.e. x∈E,则
∫ E f ( x ) d x = ∫ E g ( x ) d x \int_Ef(x)\mathrm{d}x=\int_Eg(x)\mathrm{d}x ∫Ef(x)dx=∫Eg(x)dx- f ( x ) = 0 a . e . x ∈ E ⇔ ∫ E f ( x ) d x = 0 f(x)=0\ a.e.\ x\in E\ \Leftrightarrow\ \int_Ef(x)\mathrm{d}x=0 f(x)=0 a.e. x∈E ⇔ ∫Ef(x)dx=0
- 若 ∫ E f ( x ) d x < ∞ \int_Ef(x)\mathrm{d}x<\infty ∫Ef(x)dx<∞,则 0 ⩽ f ( x ) < ∞ a . e . x ∈ E 0\leqslant f(x)<\infty\ a.e.\ x\in E 0⩽f(x)<∞ a.e. x∈E
Proof:
\color{blue}\textbf{Proof:}
Proof:
(1) 令
E
1
:
=
{
x
∈
E
:
f
⩽
g
}
,
E
2
:
=
{
x
∈
E
:
f
>
g
}
E_1:=\{x\in E:f\leqslant g\},E_2:=\{x\in E:f>g\}
E1:={x∈E:f⩽g},E2:={x∈E:f>g}
则
E
=
E
1
∪
E
2
,
E
1
∩
E
2
=
ϕ
,
m
(
E
2
)
=
0
E=E_1\cup E_2,E_1\cap E_2=\phi,m(E_2)=0
E=E1∪E2,E1∩E2=ϕ,m(E2)=0,故
∫
E
f
(
x
)
d
x
=
∫
E
1
f
(
x
)
d
x
+
∫
E
2
f
(
x
)
d
x
=
∫
E
1
f
(
x
)
d
x
+
0
⩽
∫
E
1
g
(
x
)
d
x
+
0
=
∫
E
1
g
(
x
)
d
x
+
∫
E
2
g
(
x
)
d
x
=
∫
E
g
(
x
)
d
x
\begin{align*} \int_Ef(x)\mathrm{d}x &=\int_{E_1}f(x)\mathrm{d}x+\int_{E_2}f(x)\mathrm{d}x \\&=\int_{E_1}f(x)\mathrm{d}x+0 \\&\leqslant\int_{E_1}g(x)\mathrm{d}x+0 \\&=\int_{E_1}g(x)\mathrm{d}x+\int_{E_2}g(x)\mathrm{d}x \\&=\int_Eg(x)\mathrm{d}x \end{align*}
∫Ef(x)dx=∫E1f(x)dx+∫E2f(x)dx=∫E1f(x)dx+0⩽∫E1g(x)dx+0=∫E1g(x)dx+∫E2g(x)dx=∫Eg(x)dx
此时,若
g
∈
L
(
E
)
g\in L(E)
g∈L(E),则由定义
∫
E
g
(
x
)
d
x
<
∞
\int_Eg(x)\mathrm{d}x<\infty
∫Eg(x)dx<∞,于是
∫
E
f
(
x
)
d
x
<
∞
\int_Ef(x)\mathrm{d}x<\infty
∫Ef(x)dx<∞,从而
f
∈
L
(
E
)
f\in L(E)
f∈L(E).
(2) 由 (1) 易证
(3) 必要性: 带入 (2) 易证
充分性: 即证
m
(
{
x
∈
E
:
f
≠
0
}
)
=
0
m(\{x\in E:f\ne 0\})=0
m({x∈E:f=0})=0 ,则
0
⩾
∫
{
x
∈
E
:
f
⩾
1
n
}
f
(
x
)
d
x
⩾
∫
{
x
∈
E
:
f
⩾
1
n
}
1
n
d
x
=
1
n
⋅
m
(
{
x
∈
E
:
f
⩾
1
n
}
)
⩾
0
\begin{align*} 0&\geqslant\int_{\{x\in E:f\geqslant\frac{1}{n}\}}f(x)\mathrm{d}x \\&\geqslant\int_{\{x\in E:f\geqslant\frac{1}{n}\}}\frac{1}{n}\mathrm{d}x \\&=\frac{1}{n}\cdot m(\{x\in E:f\geqslant\frac{1}{n}\}) \\&\geqslant 0 \end{align*}
0⩾∫{x∈E:f⩾n1}f(x)dx⩾∫{x∈E:f⩾n1}n1dx=n1⋅m({x∈E:f⩾n1})⩾0
故
m
(
{
x
∈
E
:
f
⩾
1
n
}
)
=
0
m(\{x\in E:f\geqslant\frac{1}{n}\})=0
m({x∈E:f⩾n1})=0
从而由次可数可加性
0
⩽
m
(
{
x
∈
E
:
f
≠
0
}
)
=
m
(
⋃
n
=
1
∞
{
x
∈
E
:
f
⩾
1
n
}
)
⩽
∑
n
=
1
∞
m
(
{
x
∈
E
:
f
⩾
1
n
}
)
=
0
\begin{align*} 0&\leqslant m(\{x\in E:f\ne 0\}) \\&=m(\bigcup_{n=1}^{\infty}\left\{x\in E:f\geqslant\frac{1}{n}\right\}) \\&\leqslant\sum_{n=1}^{\infty}m(\{x\in E:f\geqslant\frac{1}{n}\}) \\&=0 \end{align*}
0⩽m({x∈E:f=0})=m(n=1⋃∞{x∈E:f⩾n1})⩽n=1∑∞m({x∈E:f⩾n1})=0
(4) 令
E
∞
:
=
{
x
∈
E
:
f
=
+
∞
}
=
⋂
n
=
1
∞
{
x
∈
E
:
f
(
x
)
>
n
}
=
:
⋂
n
=
1
∞
E
n
\begin{align*} E_{\infty} &:=\{x\in E:f=+\infty\} \\&=\bigcap_{n=1}^{\infty}\{x\in E:f(x)>n\} \\&=:\bigcap_{n=1}^{\infty}E_n \end{align*}
E∞:={x∈E:f=+∞}=n=1⋂∞{x∈E:f(x)>n}=:n=1⋂∞En
则
∀
n
∈
N
+
:
\forall n\in\mathbb{N^+}:
∀n∈N+:
∫
E
f
(
x
)
d
x
=
∫
E
n
f
(
x
)
d
x
+
∫
E
−
E
n
f
(
x
)
d
x
⩾
∫
E
n
f
(
x
)
d
x
⩾
n
⋅
m
(
E
n
)
\begin{align*} \int_Ef(x)\mathrm{d}x &=\int_{E_n}f(x)\mathrm{d}x+\int_{E-E_n}f(x)\mathrm{d}x \\&\geqslant\int_{E_n}f(x)\mathrm{d}x \\&\geqslant n\cdot m(E_n) \end{align*}
∫Ef(x)dx=∫Enf(x)dx+∫E−Enf(x)dx⩾∫Enf(x)dx⩾n⋅m(En)
故
0
⩽
m
(
E
∞
)
⩽
m
(
E
n
)
⩽
1
n
∫
E
f
(
x
)
d
x
→
0
(
n
→
∞
)
\begin{align*} 0&\leqslant m(E_{\infty}) \leqslant m(E_n) \\&\leqslant\frac{1}{n}\int_Ef(x)\mathrm{d}x \rightarrow 0(n\to\infty) \end{align*}
0⩽m(E∞)⩽m(En)⩽n1∫Ef(x)dx→0(n→∞)
于是
m
(
E
∞
)
=
0
m(E_{\infty})=0
m(E∞)=0,从而
0
⩽
f
(
x
)
<
∞
a
.
e
.
x
∈
E
0\leqslant f(x)<\infty\ a.e.\ x\in E
0⩽f(x)<∞ a.e. x∈E
5.2.2.3 集合运算性质
Theorem \textbf{Theorem} Theorem
设 A , B ⊆ E , A ∩ B = ϕ A,B\subseteq E,A\cap B=\phi A,B⊆E,A∩B=ϕ
∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x=\int_Af(x)\mathrm{d}x+\int_ Bf(x)\mathrm{d}x ∫A∪Bf(x)dx=∫Af(x)dx+∫Bf(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
任取非负简单函数 ∀ x ∈ A ∪ B : 0 ⩽ φ ⩽ f \forall x\in A\cup B:0\leqslant\varphi\leqslant f ∀x∈A∪B:0⩽φ⩽f,则由集合运算性质与非负可测函数L积分定义
∫ A ∪ B φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x ⩽ ∫ A f ( x ) d x + ∫ B f ( x ) d x \begin{align*} \int_{A\cup B}\varphi(x)\mathrm{d}x &=\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x \\&\leqslant\int_Af(x)\mathrm{d}x+\int_Bf(x)\mathrm{d}x \end{align*} ∫A∪Bφ(x)dx=∫Aφ(x)dx+∫Bφ(x)dx⩽∫Af(x)dx+∫Bf(x)dx
由
φ
(
x
)
\varphi(x)
φ(x) 的任意性有
∫
A
∪
B
f
(
x
)
d
x
⩽
∫
A
φ
(
x
)
d
x
+
∫
B
φ
(
x
)
d
x
\int_{A\cup B}f(x)\mathrm{d}x\leqslant\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x
∫A∪Bf(x)dx⩽∫Aφ(x)dx+∫Bφ(x)dx
另一方面
∫
A
∪
B
f
(
x
)
d
x
⩾
∫
A
∪
B
φ
(
x
)
d
x
=
∫
A
φ
(
x
)
d
x
+
∫
B
φ
(
x
)
d
x
\int_{A\cup B}f(x)\mathrm{d}x\geqslant\int_{A\cup B}\varphi(x)\mathrm{d}x=\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x
∫A∪Bf(x)dx⩾∫A∪Bφ(x)dx=∫Aφ(x)dx+∫Bφ(x)dx
综上得证.
5.2.2.4 积分线性性质
Theorem \textbf{Theorem} Theorem
设 f , g f,g f,g 为可测集 E E E 上的非负可测函数,则 ∀ α , β ⩾ 0 : α f + β g \forall\alpha,\beta\geqslant 0:\alpha f+\beta g ∀α,β⩾0:αf+βg 非负可测,且
∫ E [ α f ( x ) + β g ( x ) ] d x = α ∫ E f ( x ) d x + β ∫ E g ( x ) d x \int_E[\alpha f(x)+\beta g(x)]\mathrm{d}x=\alpha\int_E f(x)\mathrm{d}x+\beta\int_Eg(x)\mathrm{d}x ∫E[αf(x)+βg(x)]dx=α∫Ef(x)dx+β∫Eg(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
由于
f
,
g
f,g
f,g 为
E
E
E 上非负可测函数,故存在非负简单函数列
{
φ
n
}
↑
,
{
ψ
n
}
↑
,
s
.
t
.
φ
n
→
f
,
ψ
n
→
g
(
n
→
∞
)
\{\varphi_n\}\uparrow,\{\psi_n\}\uparrow,\mathrm{s.t.}\ \varphi_n\to f,\psi_n\to g\ (n\to\infty)
{φn}↑,{ψn}↑,s.t. φn→f,ψn→g (n→∞),且
α
φ
n
+
β
ψ
n
→
α
f
+
β
g
(
n
→
∞
)
\alpha\varphi_n+\beta\psi_n\to\alpha f+\beta g\ (n\to\infty)
αφn+βψn→αf+βg (n→∞)
由
Levi
\text{Levi}
Levi 定理与非负简单函数积分线性性质得
∫
E
[
α
f
+
β
g
]
d
x
=
lim
n
→
∞
∫
E
[
α
φ
n
+
β
ψ
n
]
d
x
=
lim
n
→
∞
[
α
∫
E
φ
n
d
x
+
β
∫
E
ψ
n
d
x
]
=
α
∫
E
f
d
x
+
β
∫
E
g
d
x
\begin{align*} \int_E[\alpha f+\beta g]\mathrm{d}x &=\lim\limits_{n\to\infty}\int_E[\alpha\varphi_n+\beta\psi_n]\mathrm{d}x \\&=\lim\limits_{n\to\infty}\left[\alpha\int_E\varphi_n\mathrm{d}x+\beta\int_E\psi_n\mathrm{d}x\right] \\&=\alpha\int_Ef\mathrm{d}x+\beta\int_Eg\mathrm{d}x \end{align*}
∫E[αf+βg]dx=n→∞lim∫E[αφn+βψn]dx=n→∞lim[α∫Eφndx+β∫Eψndx]=α∫Efdx+β∫Egdx
5.2.3 定理
5.2.3.1 莱维单调收敛定理
Theorem \textbf{Theorem} Theorem Levi \text{Levi} Levi 单调收敛定理 ( MCT \text{MCT} MCT )
设 { f n } \{f_n\} {fn} 为 E E E 上非负可测递增函数列, lim n → ∞ f n ( x ) = f ( x ) , x ∈ E \lim\limits_{n\to\infty}f_n(x)=f(x),x\in E n→∞limfn(x)=f(x),x∈E,则
lim n → ∞ ∫ E f n ( x ) d x = ∫ E f ( x ) d x \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x=\int_Ef(x)\mathrm{d}x n→∞lim∫Efn(x)dx=∫Ef(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
(1) 由递增性质,
f
n
⩽
f
f_n\leqslant f
fn⩽f,两边取极限,则
lim
n
→
∞
∫
E
f
n
(
x
)
d
x
⩽
∫
E
f
(
x
)
d
x
\lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x\leqslant\int_Ef(x)\mathrm{d}x
n→∞lim∫Efn(x)dx⩽∫Ef(x)dx
(2) 下证反号不等式,任取
E
E
E 上非负简单函数
φ
(
x
)
∈
[
0
,
f
]
\varphi(x)\in[0,f]
φ(x)∈[0,f],再取
c
∈
(
0
,
1
)
c\in(0,1)
c∈(0,1),令
E
n
:
=
E
[
f
n
⩾
c
φ
]
E_n:=E[f_n\geqslant c\varphi]
En:=E[fn⩾cφ],其为
E
E
E 可测子集,且
{
E
n
}
↑
,
⋃
n
=
1
∞
E
n
=
E
\{E_n\}\uparrow,\bigcup\limits_{n=1}^{\infty}E_n=E
{En}↑,n=1⋃∞En=E,则由非负简单函数L积分性质
lim
n
→
∞
∫
E
n
φ
(
x
)
d
x
=
∫
E
φ
(
x
)
d
x
\lim_{n\to\infty}\int_{E_n}\varphi(x)\mathrm{d}x=\int_E\varphi(x)\mathrm{d}x
n→∞lim∫Enφ(x)dx=∫Eφ(x)dx
于是
lim
n
→
∞
∫
E
f
n
(
x
)
d
x
⩾
lim
n
→
∞
∫
E
n
f
n
(
x
)
d
x
⩾
lim
n
→
∞
∫
E
n
c
φ
(
x
)
d
x
⩾
lim
n
→
∞
c
∫
E
n
φ
(
x
)
d
x
=
c
∫
E
φ
(
x
)
d
x
\begin{align*} \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x &\geqslant\lim_{n\to\infty}\int_{E_n}f_n(x)\mathrm{d}x \\&\geqslant\lim_{n\to\infty}\int_{E_n}c\varphi(x)\mathrm{d}x \\&\geqslant\lim_{n\to\infty}c\int_{E_n}\varphi(x)\mathrm{d}x \\&=c\int_E\varphi(x)\mathrm{d}x \end{align*}
n→∞lim∫Efn(x)dx⩾n→∞lim∫Enfn(x)dx⩾n→∞lim∫Encφ(x)dx⩾n→∞limc∫Enφ(x)dx=c∫Eφ(x)dx
由 c c c 的任意性
lim n → ∞ ∫ E f n ( x ) d x ⩾ sup φ ∈ [ 0 , f ] { lim c → 1 c ∫ E φ ( x ) d x } = ∫ E f ( x ) d x \begin{align*} \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x &\geqslant\sup_{\varphi\in[0,f]}\left\{\lim_{c\to 1}c\int_E\varphi(x)\mathrm{d}x\right\} \\&=\int_Ef(x)\mathrm{d}x \end{align*} n→∞lim∫Efn(x)dx⩾φ∈[0,f]sup{c→1limc∫Eφ(x)dx}=∫Ef(x)dx
5.2.3.2 逐项积分定理
Theorem \textbf{Theorem} Theorem 逐项积分定理
设 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn 为可测集, { f n } \{f_n\} {fn} 为 E E E 上的一列非负可测函数,则
∫ E ( ∑ n = 1 ∞ f n ( x ) ) d x = ∑ n = 1 ∞ ∫ E f n ( x ) d x \int_E\left(\sum_{n=1}^{\infty}f_n(x)\right)\mathrm{d}x=\sum_{n=1}^{\infty}\int_Ef_n(x)\mathrm{d}x ∫E(n=1∑∞fn(x))dx=n=1∑∞∫Efn(x)dx
Proof:
\color{blue}\textbf{Proof:}
Proof:
令
g
n
(
x
)
:
=
∑
k
=
1
n
f
k
(
x
)
g_n(x):=\sum_{k=1}^nf_k(x)
gn(x):=k=1∑nfk(x)
则函数列
{
g
n
(
x
)
}
↑
\{g_n(x)\}\uparrow
{gn(x)}↑ 非负可测,由线性运算性质及
Levi
\text{Levi}
Levi 定理
∑
n
=
1
∞
∫
E
f
n
(
x
)
d
x
=
lim
n
→
∞
∑
k
=
1
n
∫
E
f
k
(
x
)
d
x
=
lim
n
→
∞
∫
E
(
∑
k
=
1
n
f
k
(
x
)
)
d
x
=
lim
n
→
∞
∫
E
g
n
(
x
)
d
x
=
Levi
∫
E
lim
n
→
∞
g
n
(
x
)
d
x
=
∫
E
(
∑
n
=
1
∞
f
n
(
x
)
)
d
x
\begin{align*} \sum_{n=1}^{\infty}\int_Ef_n(x)\mathrm{d}x &=\lim\limits_{n\to\infty}\sum_{k=1}^n\int_Ef_k(x)\mathrm{d}x \\&=\lim\limits_{n\to\infty}\int_E\left(\sum_{k=1}^nf_k(x)\right)\mathrm{d}x \\&=\lim\limits_{n\to\infty}\int_Eg_n(x)\mathrm{d}x \\&\xlongequal{\text{Levi}}\int_E\lim\limits_{n\to\infty}g_n(x)\mathrm{d}x \\&=\int_E\left(\sum_{n=1}^{\infty}f_n(x)\right)\mathrm{d}x \end{align*}
n=1∑∞∫Efn(x)dx=n→∞limk=1∑n∫Efk(x)dx=n→∞lim∫E(k=1∑nfk(x))dx=n→∞lim∫Egn(x)dxLevi∫En→∞limgn(x)dx=∫E(n=1∑∞fn(x))dx
5.2.3.3 法图引理
Theorem \textbf{Theorem} Theorem Fatou \text{Fatou} Fatou 引理
设 E ⊆ R n E\subseteq\mathbb{R^n} E⊆Rn 为可测集, { f n } \{f_n\} {fn} 为 E E E 上的一列非负可测函数,则
∫ E l i m ‾ n → ∞ f n ( x ) d x ⩽ l i m ‾ n → ∞ ∫ E f n ( x ) d x \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x\leqslant\varliminf_{n\to\infty}\int_Ef_n(x)\mathrm{d}x ∫En→∞limfn(x)dx⩽n→∞lim∫Efn(x)dx
Proof: \color{blue}\textbf{Proof:} Proof:
令
g
n
(
x
)
:
=
inf
k
⩾
n
f
k
(
x
)
g_n(x):=\inf_{k\geqslant n}f_k(x)
gn(x):=k⩾ninffk(x)
则非负可测函数列
{
g
n
(
x
)
}
↑
\{g_n(x)\}\uparrow
{gn(x)}↑,由
Levi
\text{Levi}
Levi 定理
∫
E
l
i
m
‾
n
→
∞
f
n
(
x
)
d
x
=
∫
E
lim
n
→
∞
inf
k
⩾
n
f
k
(
x
)
d
x
=
∫
E
lim
n
→
∞
g
n
(
x
)
d
x
=
Levi
lim
n
→
∞
∫
E
g
n
(
x
)
d
x
=
lim
n
→
∞
∫
E
inf
k
⩾
n
f
k
(
x
)
d
x
\begin{align*} \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x &=\int_E\lim_{n\to\infty}\inf_{k\geqslant n}f_k(x)\mathrm{d}x \\&=\int_E\lim_{n\to\infty} g_n(x)\mathrm{d}x \\&\xlongequal{\text{Levi}}\lim_{n\to\infty}\int_Eg_n(x)\mathrm{d}x \\&=\lim_{n\to\infty}\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x \end{align*}
∫En→∞limfn(x)dx=∫En→∞limk⩾ninffk(x)dx=∫En→∞limgn(x)dxLevin→∞lim∫Egn(x)dx=n→∞lim∫Ek⩾ninffk(x)dx
且
∀
k
⩾
n
:
inf
k
⩾
n
f
k
(
x
)
⩽
f
k
(
x
)
\forall k\geqslant n: \inf\limits_{k\geqslant n}f_k(x)\leqslant f_k(x)
∀k⩾n:k⩾ninffk(x)⩽fk(x),则
∫
E
inf
k
⩾
n
f
k
(
x
)
d
x
⩽
∫
E
f
k
(
x
)
d
x
\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x\leqslant \int_Ef_k(x)\mathrm{d}x
∫Ek⩾ninffk(x)dx⩽∫Efk(x)dx
两边取下确界,则
∫
E
inf
k
⩾
n
f
k
(
x
)
d
x
⩽
inf
k
⩾
n
∫
E
f
k
(
x
)
d
x
\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x\leqslant\inf_{k\geqslant n}\int_Ef_k(x)\mathrm{d}x
∫Ek⩾ninffk(x)dx⩽k⩾ninf∫Efk(x)dx
于是
∫
E
l
i
m
‾
n
→
∞
f
n
(
x
)
d
x
=
lim
n
→
∞
∫
E
inf
k
⩾
n
f
k
(
x
)
d
x
⩽
lim
n
→
∞
inf
k
⩾
n
∫
E
f
k
(
x
)
d
x
=
l
i
m
‾
n
→
∞
∫
E
f
n
(
x
)
d
x
\begin{align*} \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x &=\lim_{n\to\infty}\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x \\&\leqslant\lim_{n\to\infty}\inf_{k\geqslant n}\int_Ef_k(x)\mathrm{d}x \\&=\varliminf_{n\to\infty}\int_Ef_n(x)\mathrm{d}x \end{align*}
∫En→∞limfn(x)dx=n→∞lim∫Ek⩾ninffk(x)dx⩽n→∞limk⩾ninf∫Efk(x)dx=n→∞lim∫Efn(x)dx