实变函数 第五章 勒贝格积分1

§5 勒贝格积分

5.1 非负简单函数的L积分

5.1.1 定义

Define \textbf{Define} Define

  1. 设可测集 E ⊆ R n E\subseteq\mathbb{R^n} ERn φ ( x ) \varphi(x) φ(x) E E E 上的非负简单函数, E = ⋃ i = 1 k E i ( ∀ i ≠ j : E i ∩ E j = ϕ ) E=\bigcup\limits_{i=1}^kE_i(\forall i\ne j:E_i\cap E_j=\phi) E=i=1kEi(i=j:EiEj=ϕ),由特征函数(又称示性函数) X E ( x ) = { 1 , x ∈ E 0 , x ∉ E \mathcal{X}_E(x)=\left\{\begin{array}{l} 1,x\in E\\0,x\not\in E\\ \end{array}\right. XE(x)={1,xE0,xE 表示为

φ ( x ) = { c 1 , x ∈ E 1 c 2 , x ∈ E 2 ⋯ c k , x ∈ E k = ∑ i = 1 k c i X E i ( x ) \varphi(x)=\left\{\begin{array}{l} c_1,x\in E_1\\ c_2,x\in E_2\\ \cdots\\ c_k,x\in E_k\\ \end{array}\right. =\sum_{i=1}^{k}c_i\mathcal{X}_{E_i}(x) φ(x)= c1,xE1c2,xE2ck,xEk=i=1kciXEi(x)
φ ( x ) \varphi(x) φ(x) E E E 上的勒贝格积分 (简称 L L L - 积分) 定义为
∫ E φ ( x ) d x = ∑ i = 1 k c i m ( E i ) \int_E\varphi(x)\mathrm{d}x=\sum_{i=1}^{k}c_im(E_i) Eφ(x)dx=i=1kcim(Ei)

  1. A ⊆ E A\subseteq E AE,则
    ∫ A φ ( x ) d x = ∫ A φ ∣ A ( x ) d x = ∑ i = 1 k c i m ( A ∩ E i ) \int_A\varphi(x)\mathrm{d}x=\int_{A}\varphi|_A(x)\mathrm{d}x=\sum_{i=1}^kc_im(A\cap E_i) Aφ(x)dx=AφA(x)dx=i=1kcim(AEi)

5.1.2 性质

5.1.2.1 积分线性性质

Theorem \textbf{Theorem} Theorem
f , g f,g f,g 为可测集 E E E 上的非负简单函数, ∀ α , β ⩾ 0 : \forall\alpha,\beta\geqslant 0: α,β0:
∫ E [ α f ( x ) + β g ( x ) ] d x = α ∫ E f ( x ) d x + β ∫ E g ( x ) d x \int_E[\alpha f(x)+\beta g(x)]\mathrm{d}x=\alpha\int_E f(x)\mathrm{d}x+\beta\int_Eg(x)\mathrm{d}x E[αf(x)+βg(x)]dx=αEf(x)dx+βEg(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

(1) 由定义易得
∫ E α f ( x ) d x = ∑ i = 1 k α ⋅ c i m ( E i ) = α ∑ i = 1 k c i m ( E i ) = α ∫ E f ( x ) d x \begin{align*} \int_E\alpha f(x)\mathrm{d}x &=\sum_{i=1}^k\alpha\cdot c_im(E_i) \\&=\alpha\sum_{i=1}^kc_im(E_i) \\&=\alpha\int_Ef(x)\mathrm{d}x \end{align*} Eαf(x)dx=i=1kαcim(Ei)=αi=1kcim(Ei)=αEf(x)dx

(2) 设两组互不相交的可测子集 ⋃ i = 1 k E i = ⋃ j = 1 l E ~ j = E \displaystyle\bigcup_{i=1}^kE_i=\bigcup_{j=1}^l\tilde{E}_j=E i=1kEi=j=1lE~j=E,则
⋃ j = 1 l ( E i ∩ E ~ j ) = E i   ,   ⋃ i = 1 k ( E i ∩ E ~ j ) = E j \bigcup_{j=1}^l(E_i\cap\tilde{E}_j)=E_i\ ,\ \bigcup_{i=1}^k(E_i\cap\tilde{E}_j)=E_j j=1l(EiE~j)=Ei , i=1k(EiE~j)=Ej
设非负简单函数
f ( x ) = ∑ i = 1 k c i X E i ( x )   ,   g ( x ) = ∑ j = 1 l d j X E ~ j ( x ) f(x)=\sum_{i=1}^kc_i\mathcal{X}_{E_i}(x)\ ,\ g(x)=\sum_{j=1}^ld_j\mathcal{X}_{\tilde{E}_j}(x) f(x)=i=1kciXEi(x) , g(x)=j=1ldjXE~j(x)

f ( x ) + g ( x ) = c i + d j , x ∈ E i ∩ E ~ j = ∑ i , j = 1 k , l ( c i + d j ) X E i ∩ E ~ j ( x ) \begin{align*} f(x)+g(x)&=c_i+d_j,x\in E_i\cap \tilde{E}_j \\&=\sum_{i,j=1}^{k,l}(c_i+d_j)\mathcal{X}_{E_i\cap\tilde{E}_j}(x) \end{align*} f(x)+g(x)=ci+dj,xEiE~j=i,j=1k,l(ci+dj)XEiE~j(x)
为非负简单函数,于是
I = ∫ E [ f ( x ) + g ( x ) ] d x = ∑ i , j = 1 k , l ( c i + d j ) m ( E i ∩ E ~ j ) = ∑ i , j = 1 k , l c i m ( E i ∩ E ~ j ) + ∑ i , j = 1 k , l d j m ( E i ∩ E ~ j ) = ∑ i = 1 k c i ( ∑ j = 1 l m ( E i ∩ E ~ j ) ) + ∑ j = 1 l d j ( ∑ i = 1 k m ( E i ∩ E ~ j ) ) = ∑ i = 1 k c i m ( E i ) + ∑ j = 1 l d j m ( E ~ j ) = ∫ E f ( x ) d x + ∫ E g ( x ) d x \begin{align*} I&=\int_E[f(x)+g(x)]\mathrm{d}x \\&=\sum_{i,j=1}^{k,l}(c_i+d_j)m(E_i\cap\tilde{E}_j) \\&=\sum_{i,j=1}^{k,l}c_im(E_i\cap\tilde{E}_j)+\sum_{i,j=1}^{k,l}d_jm(E_i\cap\tilde{E}_j) \\&=\sum_{i=1}^{k}c_i\left(\sum_{j=1}^lm(E_i\cap\tilde{E}_j)\right)+\sum_{j=1}^ld_j\left(\sum_{i=1}^km(E_i\cap\tilde{E}_j)\right) \\&=\sum_{i=1}^{k}c_im(E_i)+\sum_{j=1}^ld_jm(\tilde{E}_j) \\&=\int_Ef(x)\mathrm{d}x+\int_Eg(x)\mathrm{d}x \end{align*} I=E[f(x)+g(x)]dx=i,j=1k,l(ci+dj)m(EiE~j)=i,j=1k,lcim(EiE~j)+i,j=1k,ldjm(EiE~j)=i=1kci(j=1lm(EiE~j))+j=1ldj(i=1km(EiE~j))=i=1kcim(Ei)+j=1ldjm(E~j)=Ef(x)dx+Eg(x)dx
综合(1)(2)得证.

5.1.2.2 集合运算性质

Theorem \textbf{Theorem} Theorem
f f f 为非负简单函数, A , B ⊆ E , A ∩ B = ϕ A,B\subseteq E,A\cap B=\phi A,BE,AB=ϕ
∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x=\int_Af(x)\mathrm{d}x+\int_ Bf(x)\mathrm{d}x ABf(x)dx=Af(x)dx+Bf(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

∫ A ∪ B f ( x ) d x = ∑ i = 1 k c i m [ ( A ∪ B ) ∩ E i ] = ∑ i = 1 k c i [ m ( A ∩ E i ) + m ( B ∩ E i ) ] = ∫ A f ( x ) d x + ∫ B f ( x ) d x \begin{align*} \int_{A\cup B}f(x)\mathrm{d}x&=\sum_{i=1}^{k}c_im[(A\cup B)\cap E_i] \\&=\sum_{i=1}^{k}c_i[m(A\cap E_i)+m(B\cap E_i)] \\&=\int_Af(x)\mathrm{d}x+\int_Bf(x)\mathrm{d}x \end{align*} ABf(x)dx=i=1kcim[(AB)Ei]=i=1kci[m(AEi)+m(BEi)]=Af(x)dx+Bf(x)dx

5.2 非负可测函数的L积分

5.2.1 定义

Define \textbf{Define} Define

  1. E ⊆ R n E\subseteq\mathbb{R^n} ERn f f f E E E 上非负可测函数, φ ( x ) \varphi(x) φ(x) E E E 上不超过 f ( x ) f(x) f(x) 的非负简单函数,则勒贝格积分定义为
    ∫ E f ( x ) d x = sup ⁡ ∀ x ∈ E : 0 ⩽ φ ⩽ f { ∫ E φ ( x ) d x } ∈ [ 0 , + ∞ ] \int_Ef(x)\mathrm{d}x=\sup_{\forall x\in E:0\leqslant\varphi\leqslant f}\left\{\int_E\varphi(x)\mathrm{d}x\right\}\in[0,+\infty] Ef(x)dx=xE:0φfsup{Eφ(x)dx}[0,+]
    ∫ E f ( x ) d x < + ∞ \int_Ef(x)\mathrm{d}x<+\infty Ef(x)dx<+,则称 f ( x ) f(x) f(x) E E E 上勒贝格可积.

  2. A ⊆ E A\subseteq E AE,则
    ∫ A f ( x ) d x = ∫ A f ∣ A ( x ) d x = ∫ E f ( x ) X A ( x ) d x \int_Af(x)\mathrm{d}x=\int_Af\mid_A(x)\mathrm{d}x=\int_Ef(x)\mathcal{X}_A(x)\mathrm{d}x Af(x)dx=AfA(x)dx=Ef(x)XA(x)dx

5.2.2 性质

5.2.2.1 零测集性质

Theorem \textbf{Theorem} Theorem
m ( E ) = 0 m(E)=0 m(E)=0,则 ∫ E f ( x ) d x = 0 \int_Ef(x)\mathrm{d}x=0 Ef(x)dx=0

Proof: \color{blue}\textbf{Proof:} Proof:

由定义易证

5.2.2.2 单调性

Theorem \textbf{Theorem} Theorem
E ∈ M E\in\mathscr{M} EM f , g f,g f,g 为非负可测函数

  1. f ( x ) ⩽ g ( x )  a.e.  x ∈ E f(x)\leqslant g(x)\ \text{a.e.}\ x\in E f(x)g(x) a.e. xE,则
    ∫ E f ( x ) d x ⩽ ∫ E g ( x ) d x g ∈ L ( E ) ⇒ f ∈ L ( E ) \int_Ef(x)\mathrm{d}x\leqslant\int_Eg(x)\mathrm{d}x \\g\in L(E)\Rightarrow f\in L(E) Ef(x)dxEg(x)dxgL(E)fL(E)
  2. f ( x ) = g ( x )  a.e.  x ∈ E f(x)=g(x)\ \text{a.e.}\ x\in E f(x)=g(x) a.e. xE,则
    ∫ E f ( x ) d x = ∫ E g ( x ) d x \int_Ef(x)\mathrm{d}x=\int_Eg(x)\mathrm{d}x Ef(x)dx=Eg(x)dx
  3. f ( x ) = 0   a . e .   x ∈ E   ⇔   ∫ E f ( x ) d x = 0 f(x)=0\ a.e.\ x\in E\ \Leftrightarrow\ \int_Ef(x)\mathrm{d}x=0 f(x)=0 a.e. xE  Ef(x)dx=0
  4. ∫ E f ( x ) d x < ∞ \int_Ef(x)\mathrm{d}x<\infty Ef(x)dx<,则 0 ⩽ f ( x ) < ∞   a . e .   x ∈ E 0\leqslant f(x)<\infty\ a.e.\ x\in E 0f(x)< a.e. xE

Proof: \color{blue}\textbf{Proof:} Proof:
(1) 令
E 1 : = { x ∈ E : f ⩽ g } , E 2 : = { x ∈ E : f > g } E_1:=\{x\in E:f\leqslant g\},E_2:=\{x\in E:f>g\} E1:={xE:fg},E2:={xE:f>g}
E = E 1 ∪ E 2 , E 1 ∩ E 2 = ϕ , m ( E 2 ) = 0 E=E_1\cup E_2,E_1\cap E_2=\phi,m(E_2)=0 E=E1E2,E1E2=ϕ,m(E2)=0,故
∫ E f ( x ) d x = ∫ E 1 f ( x ) d x + ∫ E 2 f ( x ) d x = ∫ E 1 f ( x ) d x + 0 ⩽ ∫ E 1 g ( x ) d x + 0 = ∫ E 1 g ( x ) d x + ∫ E 2 g ( x ) d x = ∫ E g ( x ) d x \begin{align*} \int_Ef(x)\mathrm{d}x &=\int_{E_1}f(x)\mathrm{d}x+\int_{E_2}f(x)\mathrm{d}x \\&=\int_{E_1}f(x)\mathrm{d}x+0 \\&\leqslant\int_{E_1}g(x)\mathrm{d}x+0 \\&=\int_{E_1}g(x)\mathrm{d}x+\int_{E_2}g(x)\mathrm{d}x \\&=\int_Eg(x)\mathrm{d}x \end{align*} Ef(x)dx=E1f(x)dx+E2f(x)dx=E1f(x)dx+0E1g(x)dx+0=E1g(x)dx+E2g(x)dx=Eg(x)dx
此时,若 g ∈ L ( E ) g\in L(E) gL(E),则由定义 ∫ E g ( x ) d x < ∞ \int_Eg(x)\mathrm{d}x<\infty Eg(x)dx<,于是 ∫ E f ( x ) d x < ∞ \int_Ef(x)\mathrm{d}x<\infty Ef(x)dx<,从而 f ∈ L ( E ) f\in L(E) fL(E).

(2) 由 (1) 易证

(3) 必要性: 带入 (2) 易证

充分性: 即证 m ( { x ∈ E : f ≠ 0 } ) = 0 m(\{x\in E:f\ne 0\})=0 m({xE:f=0})=0 ,则
0 ⩾ ∫ { x ∈ E : f ⩾ 1 n } f ( x ) d x ⩾ ∫ { x ∈ E : f ⩾ 1 n } 1 n d x = 1 n ⋅ m ( { x ∈ E : f ⩾ 1 n } ) ⩾ 0 \begin{align*} 0&\geqslant\int_{\{x\in E:f\geqslant\frac{1}{n}\}}f(x)\mathrm{d}x \\&\geqslant\int_{\{x\in E:f\geqslant\frac{1}{n}\}}\frac{1}{n}\mathrm{d}x \\&=\frac{1}{n}\cdot m(\{x\in E:f\geqslant\frac{1}{n}\}) \\&\geqslant 0 \end{align*} 0{xE:fn1}f(x)dx{xE:fn1}n1dx=n1m({xE:fn1})0

m ( { x ∈ E : f ⩾ 1 n } ) = 0 m(\{x\in E:f\geqslant\frac{1}{n}\})=0 m({xE:fn1})=0
从而由次可数可加性
0 ⩽ m ( { x ∈ E : f ≠ 0 } ) = m ( ⋃ n = 1 ∞ { x ∈ E : f ⩾ 1 n } ) ⩽ ∑ n = 1 ∞ m ( { x ∈ E : f ⩾ 1 n } ) = 0 \begin{align*} 0&\leqslant m(\{x\in E:f\ne 0\}) \\&=m(\bigcup_{n=1}^{\infty}\left\{x\in E:f\geqslant\frac{1}{n}\right\}) \\&\leqslant\sum_{n=1}^{\infty}m(\{x\in E:f\geqslant\frac{1}{n}\}) \\&=0 \end{align*} 0m({xE:f=0})=m(n=1{xE:fn1})n=1m({xE:fn1})=0

(4) 令
E ∞ : = { x ∈ E : f = + ∞ } = ⋂ n = 1 ∞ { x ∈ E : f ( x ) > n } = : ⋂ n = 1 ∞ E n \begin{align*} E_{\infty} &:=\{x\in E:f=+\infty\} \\&=\bigcap_{n=1}^{\infty}\{x\in E:f(x)>n\} \\&=:\bigcap_{n=1}^{\infty}E_n \end{align*} E:={xE:f=+}=n=1{xE:f(x)>n}=:n=1En
∀ n ∈ N + : \forall n\in\mathbb{N^+}: nN+:
∫ E f ( x ) d x = ∫ E n f ( x ) d x + ∫ E − E n f ( x ) d x ⩾ ∫ E n f ( x ) d x ⩾ n ⋅ m ( E n ) \begin{align*} \int_Ef(x)\mathrm{d}x &=\int_{E_n}f(x)\mathrm{d}x+\int_{E-E_n}f(x)\mathrm{d}x \\&\geqslant\int_{E_n}f(x)\mathrm{d}x \\&\geqslant n\cdot m(E_n) \end{align*} Ef(x)dx=Enf(x)dx+EEnf(x)dxEnf(x)dxnm(En)

0 ⩽ m ( E ∞ ) ⩽ m ( E n ) ⩽ 1 n ∫ E f ( x ) d x → 0 ( n → ∞ ) \begin{align*} 0&\leqslant m(E_{\infty}) \leqslant m(E_n) \\&\leqslant\frac{1}{n}\int_Ef(x)\mathrm{d}x \rightarrow 0(n\to\infty) \end{align*} 0m(E)m(En)n1Ef(x)dx0(n)
于是 m ( E ∞ ) = 0 m(E_{\infty})=0 m(E)=0,从而 0 ⩽ f ( x ) < ∞   a . e .   x ∈ E 0\leqslant f(x)<\infty\ a.e.\ x\in E 0f(x)< a.e. xE

5.2.2.3 集合运算性质

Theorem \textbf{Theorem} Theorem
A , B ⊆ E , A ∩ B = ϕ A,B\subseteq E,A\cap B=\phi A,BE,AB=ϕ
∫ A ∪ B f ( x ) d x = ∫ A f ( x ) d x + ∫ B f ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x=\int_Af(x)\mathrm{d}x+\int_ Bf(x)\mathrm{d}x ABf(x)dx=Af(x)dx+Bf(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

任取非负简单函数 ∀ x ∈ A ∪ B : 0 ⩽ φ ⩽ f \forall x\in A\cup B:0\leqslant\varphi\leqslant f xAB:0φf,则由集合运算性质与非负可测函数L积分定义

∫ A ∪ B φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x ⩽ ∫ A f ( x ) d x + ∫ B f ( x ) d x \begin{align*} \int_{A\cup B}\varphi(x)\mathrm{d}x &=\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x \\&\leqslant\int_Af(x)\mathrm{d}x+\int_Bf(x)\mathrm{d}x \end{align*} ABφ(x)dx=Aφ(x)dx+Bφ(x)dxAf(x)dx+Bf(x)dx

φ ( x ) \varphi(x) φ(x) 的任意性有
∫ A ∪ B f ( x ) d x ⩽ ∫ A φ ( x ) d x + ∫ B φ ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x\leqslant\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x ABf(x)dxAφ(x)dx+Bφ(x)dx

另一方面
∫ A ∪ B f ( x ) d x ⩾ ∫ A ∪ B φ ( x ) d x = ∫ A φ ( x ) d x + ∫ B φ ( x ) d x \int_{A\cup B}f(x)\mathrm{d}x\geqslant\int_{A\cup B}\varphi(x)\mathrm{d}x=\int_A\varphi(x)\mathrm{d}x+\int_B\varphi(x)\mathrm{d}x ABf(x)dxABφ(x)dx=Aφ(x)dx+Bφ(x)dx
综上得证.

5.2.2.4 积分线性性质

Theorem \textbf{Theorem} Theorem
f , g f,g f,g 为可测集 E E E 上的非负可测函数,则 ∀ α , β ⩾ 0 : α f + β g \forall\alpha,\beta\geqslant 0:\alpha f+\beta g α,β0:αf+βg 非负可测,且
∫ E [ α f ( x ) + β g ( x ) ] d x = α ∫ E f ( x ) d x + β ∫ E g ( x ) d x \int_E[\alpha f(x)+\beta g(x)]\mathrm{d}x=\alpha\int_E f(x)\mathrm{d}x+\beta\int_Eg(x)\mathrm{d}x E[αf(x)+βg(x)]dx=αEf(x)dx+βEg(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

由于 f , g f,g f,g E E E 上非负可测函数,故存在非负简单函数列 { φ n } ↑ , { ψ n } ↑ , s . t .   φ n → f , ψ n → g   ( n → ∞ ) \{\varphi_n\}\uparrow,\{\psi_n\}\uparrow,\mathrm{s.t.}\ \varphi_n\to f,\psi_n\to g\ (n\to\infty) {φn},{ψn},s.t. φnf,ψng (n),且 α φ n + β ψ n → α f + β g   ( n → ∞ ) \alpha\varphi_n+\beta\psi_n\to\alpha f+\beta g\ (n\to\infty) αφn+βψnαf+βg (n)
Levi \text{Levi} Levi 定理与非负简单函数积分线性性质得
∫ E [ α f + β g ] d x = lim ⁡ n → ∞ ∫ E [ α φ n + β ψ n ] d x = lim ⁡ n → ∞ [ α ∫ E φ n d x + β ∫ E ψ n d x ] = α ∫ E f d x + β ∫ E g d x \begin{align*} \int_E[\alpha f+\beta g]\mathrm{d}x &=\lim\limits_{n\to\infty}\int_E[\alpha\varphi_n+\beta\psi_n]\mathrm{d}x \\&=\lim\limits_{n\to\infty}\left[\alpha\int_E\varphi_n\mathrm{d}x+\beta\int_E\psi_n\mathrm{d}x\right] \\&=\alpha\int_Ef\mathrm{d}x+\beta\int_Eg\mathrm{d}x \end{align*} E[αf+βg]dx=nlimE[αφn+βψn]dx=nlim[αEφndx+βEψndx]=αEfdx+βEgdx

5.2.3 定理

5.2.3.1 莱维单调收敛定理

Theorem \textbf{Theorem} Theorem Levi \text{Levi} Levi 单调收敛定理 ( MCT \text{MCT} MCT )
{ f n } \{f_n\} {fn} E E E 上非负可测递增函数列, lim ⁡ n → ∞ f n ( x ) = f ( x ) , x ∈ E \lim\limits_{n\to\infty}f_n(x)=f(x),x\in E nlimfn(x)=f(x),xE,则
lim ⁡ n → ∞ ∫ E f n ( x ) d x = ∫ E f ( x ) d x \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x=\int_Ef(x)\mathrm{d}x nlimEfn(x)dx=Ef(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

(1) 由递增性质, f n ⩽ f f_n\leqslant f fnf,两边取极限,则
lim ⁡ n → ∞ ∫ E f n ( x ) d x ⩽ ∫ E f ( x ) d x \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x\leqslant\int_Ef(x)\mathrm{d}x nlimEfn(x)dxEf(x)dx

(2) 下证反号不等式,任取 E E E 上非负简单函数 φ ( x ) ∈ [ 0 , f ] \varphi(x)\in[0,f] φ(x)[0,f],再取 c ∈ ( 0 , 1 ) c\in(0,1) c(0,1),令 E n : = E [ f n ⩾ c φ ] E_n:=E[f_n\geqslant c\varphi] En:=E[fncφ],其为 E E E 可测子集,且 { E n } ↑ , ⋃ n = 1 ∞ E n = E \{E_n\}\uparrow,\bigcup\limits_{n=1}^{\infty}E_n=E {En},n=1En=E,则由非负简单函数L积分性质
lim ⁡ n → ∞ ∫ E n φ ( x ) d x = ∫ E φ ( x ) d x \lim_{n\to\infty}\int_{E_n}\varphi(x)\mathrm{d}x=\int_E\varphi(x)\mathrm{d}x nlimEnφ(x)dx=Eφ(x)dx
于是
lim ⁡ n → ∞ ∫ E f n ( x ) d x ⩾ lim ⁡ n → ∞ ∫ E n f n ( x ) d x ⩾ lim ⁡ n → ∞ ∫ E n c φ ( x ) d x ⩾ lim ⁡ n → ∞ c ∫ E n φ ( x ) d x = c ∫ E φ ( x ) d x \begin{align*} \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x &\geqslant\lim_{n\to\infty}\int_{E_n}f_n(x)\mathrm{d}x \\&\geqslant\lim_{n\to\infty}\int_{E_n}c\varphi(x)\mathrm{d}x \\&\geqslant\lim_{n\to\infty}c\int_{E_n}\varphi(x)\mathrm{d}x \\&=c\int_E\varphi(x)\mathrm{d}x \end{align*} nlimEfn(x)dxnlimEnfn(x)dxnlimEncφ(x)dxnlimcEnφ(x)dx=cEφ(x)dx

c c c 的任意性

lim ⁡ n → ∞ ∫ E f n ( x ) d x ⩾ sup ⁡ φ ∈ [ 0 , f ] { lim ⁡ c → 1 c ∫ E φ ( x ) d x } = ∫ E f ( x ) d x \begin{align*} \lim_{n\to\infty}\int_Ef_n(x)\mathrm{d}x &\geqslant\sup_{\varphi\in[0,f]}\left\{\lim_{c\to 1}c\int_E\varphi(x)\mathrm{d}x\right\} \\&=\int_Ef(x)\mathrm{d}x \end{align*} nlimEfn(x)dxφ[0,f]sup{c1limcEφ(x)dx}=Ef(x)dx

5.2.3.2 逐项积分定理

Theorem \textbf{Theorem} Theorem 逐项积分定理
E ⊆ R n E\subseteq\mathbb{R^n} ERn 为可测集, { f n } \{f_n\} {fn} E E E 上的一列非负可测函数,则
∫ E ( ∑ n = 1 ∞ f n ( x ) ) d x = ∑ n = 1 ∞ ∫ E f n ( x ) d x \int_E\left(\sum_{n=1}^{\infty}f_n(x)\right)\mathrm{d}x=\sum_{n=1}^{\infty}\int_Ef_n(x)\mathrm{d}x E(n=1fn(x))dx=n=1Efn(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:

g n ( x ) : = ∑ k = 1 n f k ( x ) g_n(x):=\sum_{k=1}^nf_k(x) gn(x):=k=1nfk(x)
则函数列 { g n ( x ) } ↑ \{g_n(x)\}\uparrow {gn(x)} 非负可测,由线性运算性质及 Levi \text{Levi} Levi 定理
∑ n = 1 ∞ ∫ E f n ( x ) d x = lim ⁡ n → ∞ ∑ k = 1 n ∫ E f k ( x ) d x = lim ⁡ n → ∞ ∫ E ( ∑ k = 1 n f k ( x ) ) d x = lim ⁡ n → ∞ ∫ E g n ( x ) d x = Levi ∫ E lim ⁡ n → ∞ g n ( x ) d x = ∫ E ( ∑ n = 1 ∞ f n ( x ) ) d x \begin{align*} \sum_{n=1}^{\infty}\int_Ef_n(x)\mathrm{d}x &=\lim\limits_{n\to\infty}\sum_{k=1}^n\int_Ef_k(x)\mathrm{d}x \\&=\lim\limits_{n\to\infty}\int_E\left(\sum_{k=1}^nf_k(x)\right)\mathrm{d}x \\&=\lim\limits_{n\to\infty}\int_Eg_n(x)\mathrm{d}x \\&\xlongequal{\text{Levi}}\int_E\lim\limits_{n\to\infty}g_n(x)\mathrm{d}x \\&=\int_E\left(\sum_{n=1}^{\infty}f_n(x)\right)\mathrm{d}x \end{align*} n=1Efn(x)dx=nlimk=1nEfk(x)dx=nlimE(k=1nfk(x))dx=nlimEgn(x)dxLevi Enlimgn(x)dx=E(n=1fn(x))dx

5.2.3.3 法图引理

Theorem \textbf{Theorem} Theorem Fatou \text{Fatou} Fatou 引理
E ⊆ R n E\subseteq\mathbb{R^n} ERn 为可测集, { f n } \{f_n\} {fn} E E E 上的一列非负可测函数,则
∫ E l i m ‾ ⁡ n → ∞ f n ( x ) d x ⩽ l i m ‾ ⁡ n → ∞ ∫ E f n ( x ) d x \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x\leqslant\varliminf_{n\to\infty}\int_Ef_n(x)\mathrm{d}x Enlimfn(x)dxnlimEfn(x)dx

Proof: \color{blue}\textbf{Proof:} Proof:


g n ( x ) : = inf ⁡ k ⩾ n f k ( x ) g_n(x):=\inf_{k\geqslant n}f_k(x) gn(x):=kninffk(x)
则非负可测函数列 { g n ( x ) } ↑ \{g_n(x)\}\uparrow {gn(x)},由 Levi \text{Levi} Levi 定理
∫ E l i m ‾ ⁡ n → ∞ f n ( x ) d x = ∫ E lim ⁡ n → ∞ inf ⁡ k ⩾ n f k ( x ) d x = ∫ E lim ⁡ n → ∞ g n ( x ) d x = Levi lim ⁡ n → ∞ ∫ E g n ( x ) d x = lim ⁡ n → ∞ ∫ E inf ⁡ k ⩾ n f k ( x ) d x \begin{align*} \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x &=\int_E\lim_{n\to\infty}\inf_{k\geqslant n}f_k(x)\mathrm{d}x \\&=\int_E\lim_{n\to\infty} g_n(x)\mathrm{d}x \\&\xlongequal{\text{Levi}}\lim_{n\to\infty}\int_Eg_n(x)\mathrm{d}x \\&=\lim_{n\to\infty}\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x \end{align*} Enlimfn(x)dx=Enlimkninffk(x)dx=Enlimgn(x)dxLevi nlimEgn(x)dx=nlimEkninffk(x)dx
∀ k ⩾ n : inf ⁡ k ⩾ n f k ( x ) ⩽ f k ( x ) \forall k\geqslant n: \inf\limits_{k\geqslant n}f_k(x)\leqslant f_k(x) kn:kninffk(x)fk(x),则
∫ E inf ⁡ k ⩾ n f k ( x ) d x ⩽ ∫ E f k ( x ) d x \int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x\leqslant \int_Ef_k(x)\mathrm{d}x Ekninffk(x)dxEfk(x)dx
两边取下确界,则
∫ E inf ⁡ k ⩾ n f k ( x ) d x ⩽ inf ⁡ k ⩾ n ∫ E f k ( x ) d x \int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x\leqslant\inf_{k\geqslant n}\int_Ef_k(x)\mathrm{d}x Ekninffk(x)dxkninfEfk(x)dx
于是
∫ E l i m ‾ ⁡ n → ∞ f n ( x ) d x = lim ⁡ n → ∞ ∫ E inf ⁡ k ⩾ n f k ( x ) d x ⩽ lim ⁡ n → ∞ inf ⁡ k ⩾ n ∫ E f k ( x ) d x = l i m ‾ ⁡ n → ∞ ∫ E f n ( x ) d x \begin{align*} \int_E\varliminf_{n\to\infty} f_n(x)\mathrm{d}x &=\lim_{n\to\infty}\int_E\inf_{k\geqslant n}f_k(x)\mathrm{d}x \\&\leqslant\lim_{n\to\infty}\inf_{k\geqslant n}\int_Ef_k(x)\mathrm{d}x \\&=\varliminf_{n\to\infty}\int_Ef_n(x)\mathrm{d}x \end{align*} Enlimfn(x)dx=nlimEkninffk(x)dxnlimkninfEfk(x)dx=nlimEfn(x)dx


实变函数 第五章 勒贝格积分2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值