实变函数论5-积分论5-黎曼积分和勒贝格积分1:勒贝格积分是黎曼积分的推广但不是黎曼反常积分的推广

本节就一元函数的情形讨论黎曼积分和勒贝格积分的关系.我们把一元函数 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上的黎曼积分和勒贝格积分分别记为 ( R ) ∫ a b f ( x ) d x ( R ) \int _ { a } ^ { b } f ( x ) \mathrm { d } x (R)abf(x)dx ( L ) ∫ ( a , b ] f ( x ) d x . ( L ) \int _ { ( a , b ] } f ( x ) \mathrm { d } x . (L)(a,b]f(x)dx. 我们先给出有界函数 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] R R R
可积的一个充要条件,然后讨论这两种积分之间的关系,结论如下:

勒贝格积分是黎曼积分的推广但不是黎曼反常积分的推广

f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上的一个有界函数, x ∈ [ a , b ] x \in [ a , b ] x[a,b] ∣ f ( x ) ∣ ⩽ M . | f ( x ) | \leqslant M . f(x)M. 对于任意的正整数 n , n , n, [ a , b ] [ a , b ] [a,b] 的分法

T ( n ) : a = x 0 ( n ) < x 1 ( n ) < ⋯ < x P n ( n ) = b , T ^ { ( n ) } : a = x _ { 0 } ^ { ( n ) } < x _ { 1 } ^ { ( n ) } < \cdots < x _ { P _ { n } } ^ { ( n ) } = b , T(n):a=x0(n)<x1(n)<<xPn(n)=b,

使得 n → ∞ n \rightarrow \infty n 时, δ ( T n ) → 0 , \delta \left( T ^ { n } \right) \rightarrow 0 , δ(Tn)0, 这里

δ ( T n ) = max ⁡ { x i ( n ) − x i − 1 ( n ) : i = 1 , 2 , 3 , ⋯   , P n } \delta \left( T ^ { n } \right) = \max \left\{ x _ { i } ^ { ( n ) } - x _ { i - 1 } ^ { ( n ) } : i = 1 , 2 , 3 , \cdots , P _ { n } \right\} δ(Tn)=max{ xi(n)xi1(n):i=1,2,3,,Pn}

表示分法 T ( n ) T ^ { ( n ) } T(n) 的最大区间长.令

M

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值