实变函数论6-微分与不定积分2-单调函数的可微性3:勒贝格定理

魏尔斯特拉斯曾经给出过处处连续而无处可导的函数的例子,但是单调函数却有下面十分深刻的性质.

定理(勒贝格)

f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上的单调函数,则

  1. f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上几乎处处存在导数 f ′ ( x ) ; f ^ { \prime } ( x ) ; f(x);
  2. f ′ ( x ) f ^ { \prime } ( x ) f(x) [ a , b ] [ a , b ] [a,b] 上可积;
  3. 如果 f ( x ) f ( x ) f(x) 为增函数,有 ∫ a b f ′ ( x ) d x ⩽ f ( b ) − f ( a ) . \int _ { a } ^ { b } f ^ { \prime } ( x ) \mathrm { d } x \leqslant f ( b ) - f ( a ) . abf(x)dxf(b)f(a).

证明
不妨设 f ( x ) f ( x ) f(x) 为增函数.

g ( x ) = f ( x ) + x , g ( x ) = f ( x ) + x , g(x)=f(x)+x, 显然 g ( x ) g ( x ) g(x) [ a , b ] [ a , b ] [a,b]上为严格增函数,且 g ( x ) g ( x ) g(x) f ( x ) f ( x ) f(x) 有相同的可导性.设

E = { x ∣ g ′ ( x ) 不存在 } , E = \left\{ x \mid g ^ { \prime } ( x ) 不 存 在 \right\} , E={ xg(x)不存在},

于是对任何点 x 0 ∈ E , x _ { 0 } \in E , x0E, 总有两个列导数 D 1 g ( x 0 ) D _ { 1 } g \left( x _ { 0 } \right) D1g(x0) D 2 g ( x 0 ) D _ { 2 } g \left( x _ { 0 } \right) D2g(x0) 使 D 1 g ( x 0 ) ≠ D 2 g ( x 0 ) , D _ { 1 } g \left( x _ { 0 } \right) \neq D _ { 2 } g \left( x _ { 0 } \right) , D1g(x0)=D2g(x0),不妨设 D 1 g ( x 0 ) < D 2 g ( x 0 ) , D _ { 1 } g \left( x _ { 0 } \right) < D _ { 2 } g \left( x _ { 0 } \right) , D1g(x0)<D2g(x0),这 时必有两个非负有理数 p , q p , q p,q 使

D 1 g ( x 0 ) < p < q < D 2 g ( x 0 ) , D _ { 1 } g \left( x _ { 0 } \right) < p < q < D _ { 2 } g \left( x _ { 0 } \right) , D1g(x0)<p<q<D2g(x0),

令集合 E p q = { x 0 ∣ D 1 g ( x 0 ) < p < q < D 2 g ( x 0 ) } , E _ { p q } = \left\{ x _ { 0 } \mid D _ { 1 } g \left( x _ { 0 } \right) < p < q < D _ { 2 } g \left( x _ { 0 } \right) \right\} , Epq={ x0D1g(x0)<p<q<D2g(x0)},易知

E = ⋃ p , q E p q . E = \bigcup _ { p , q } E _ { p q } . E=p,qEpq.

由引理知

q m ∗ E p q ⩽ m ∗ g ( E p q ) ⩽ p m ∗ E p q . q m ^ { * } E _ { p q } \leqslant m ^ { * } g \left( E _ { p q } \right) \leqslant p m ^ { * } E _ { p q } . qmEpqmg(Epq)pmEpq.

因为 q > p , q > p , q>p, 所以 m ∗ E p q = 0 , m ^ { * } E _ { p q } = 0 , mEpq=0, m E = 0 , m E = 0 , mE=0, 所以 f ( x ) f ( x ) f(x) [ a , b ] [ a , b ] [a,b] a . e . a . e . a.e. 有导数(包括无限导数在内).设

g n ( x ) = n [ f ( x + 1 n ) − f ( x ) ] , g _ { n } ( x ) = n \left[ f \left( x + \frac { 1 } { n } \right) - f ( x ) \right] , gn(x)=n[f(x+n1)f(x)],

此外当 x ⩾ b x \geqslant b xb 时令 f ( x ) = f ( b ) , f ( x ) = f ( b ) , f(x)=f(b), 由上面知, g n ( x ) → f ′ ( x ) a . e . g _ { n } ( x ) \rightarrow f ^ { \prime } ( x ) a . e . gn(x)f(x)a.e. [ a , b ] , [ a , b ] , [a,b], 由于 f ( x ) f ( x ) f(x) 可测,所以 g n ( x ) , f ′ ( x ) g _ { n } ( x ) , f ^ { \prime } ( x ) gn(x),f(x) ∣ f ′ ( x ) ∣ \left| f ^ { \prime } ( x ) \right| f(x) 都可测.由法图引理和 f ( x ) f ( x ) f(x)的单调性,便得

∫ a b ∣ f ′ ( x ) ∣ d x ⩽ lim ⁡ ‾ n → ∞ ∫ a b ∣ g n ( x ) ∣ d x = lim ⁡ n → ∞ ∫ a b g n ( x ) d x = lim ⁡ ‾ n → ∞ [ n ∫ a + 1 n b + 1 n f ( x ) d x − n ∫ a b f ( x ) d x ] = lim ⁡ ‾ n → ∞ [ n ∫ b b + 1 n f ( x ) d x − n ∫ a a + 1 n f ( x ) d x ] ⩽ lim ⁡ ‾ n → ∞ [ f

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值