GPU显存占用率过低的解决方案

训练深度学习模型时,如果GPU利用率低可能是由于Dataloader的num_workers设置不当。当num_workers设为0时,数据读取可能成为瓶颈。通常建议根据机器的CPU资源设置合理数值,如8或16,但不应超过总CPU物理核心数。此外,为防止PytorchDataLoader的内存泄漏问题,可以使用torch.multiprocessing.set_sharing_strategy(file_system)来设置共享策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在训练模型时,有时会出现GPU利用率很低的情况。有可能是CPU读取数据的速度跟不上模型训练的速度,导致GPU处于等待的状态。一个可能的原因是dataloader的num_workers=0,只有一个主进程。为避免这种情况可以根据机器设置合适的num_workers,一般设置为8或16。
注意num_workers<总CPU物理核心数

# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 

# 查看物理CPU个数
cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l

# 查看每个物理CPU中core的个数(即核数)
cat /proc/cpuinfo| grep "cpu cores"| uniq

为避免出现Pytorch DataLoader 内存泄漏 RuntimeError: received 0 items of ancdata
添加以下代码:

torch.multiprocessing.set_sharing_strategy('file_system')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值