SHARE: Shaping Data Distribution at Edge for Communication-Efficient Hierarchical Federated Learning
摘要:
联合学习(FL)可以在移动节点上实现分布式模型训练,而无需共享对隐私敏感的原始数据。然而,为了实现高效的FL,一个重大挑战是提交模型更新的通信开销过高,因为通常需要频繁的云模型聚合才能达到目标精度,尤其是当移动节点处的数据分布不平衡时。通过试点实验,验证了如果模型聚合可以在边缘进行,则可以避免频繁的云模型聚合而不会降低性能。为此,我们介绍了分层联合学习(HFL)框架,其中选择分布式节点的子集作为边缘聚合器来进行边缘聚合。特别是,在HFL框架下,我们提出了一个通信成本最小化(CCM)问题,以最小化边缘/云聚合带来的通信成本,并对边缘聚合器的选择和分布式进行决策
问题提出:
为了实现高效的FL,一个重大挑战是提交模型更新的通信开销过高,因为通常需要频繁的云模型聚合才能达到目标精度,尤其是当移动节点处的数据分布不平衡时。矛盾的是,分布式节点通常在通信/带宽资源方面受到限制,无法频繁与云通信。
此外,随着学习模型结构变得越来越复杂(例如,深度神经网络),模型更新的数据量将显著增加,加剧通信开销。
现有工作:
①压缩方案,如稀疏化、量化和草图,被应用于压缩模型更新,以减少每轮通信的消息大小。它们可以降低每轮通信成本,但代价是精度和收敛速度方面的性能下降不可忽略&#x