MNE学习笔记(七):Evoked data的可视化

MNE学习笔记(七):Evoked data的可视化

参考文章:https://mne.tools/stable/auto_tutorials/evoked/20_visualize_evoked.html

准备工作

这里就不再解释了,具体可以查看MNE学习笔记(四):Evoked数据结构

代码:

import os
import numpy as np
import mne
from matplotlib import pyplot as plt

# 如果没有数据则用这个自动下载
# sample_data_folder = mne.datasets.sample.data_path()
# 已有数据,则直接加载即可
sample_data_folder = "D:\Data\MNE-sample-data"
sample_data_evk_file = os.path.join(sample_data_folder, 'MEG', 'sample',
                                    'sample_audvis-ave.fif')
evokeds_list = mne.read_evokeds(sample_data_evk_file, baseline=(None, 0),
                                proj=True, verbose=False)

# Show the condition names, and reassure ourselves that baseline correction has been applied.
for e in evokeds_list:
    print(f'Condition: {e.comment}, baseline: {e.baseline}')

# convert that list of Evoked objects into a dictionary
conds = ('aud/left', 'aud/right', 'vis/left', 'vis/right')
evks = dict(zip(conds, evokeds_list))
#      ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ this is equivalent to:
# {'aud/left': evokeds_list[0], 'aud/right': evokeds_list[1],
#  'vis/left': evokeds_list[2], 'vis/right': evokeds_list[3]}

结果:

image-20210902185530005

绘制信号追踪图(signal traces)

Evoked对象最基本的图是每一个channel类型的蝴蝶图(butterfly plot),这是由evoked.plot()方法生成的。默认情况下,‘bad’ channel会被排除,但是可以通过将一个空的list传递给exclude参数(默认为exclude='bads')对它进行控制:

代码:

# signal trace
evks['aud/left'].plot(exclude=[])
plt.show()

结果:

image-20210902192547843 image-20210902192613337

evoked.plot()参数含义

  • picks参数:可以让我们通过name、index或者type来选择channel。这里展示一下只选择magnetometer channel的图。
  • spatial_colors=True:根据它们的位置用颜色编码通道轨迹。
  • gfp=True:叠加/添加对信号的均方根(RMS - Root Mean Square)的追踪(trace)。

代码:

# pick spatial_color gfp
evks['aud/left'].plot(picks='mag', spatial_colors=True, gfp=True)
plt.show()

结果:

image-20210903103323708

选择一段之后:

image-20210903103447687

绘制头皮地形图(scalp topographies)

通过plot_topmap方法可以生成特定时间的头皮地形图。

代码:

# 头皮地形图
times = np.linspace(0.05, 0.13, 5)
evks['aud/left'].plot_topomap(ch_type='mag', times=times, colorbar=True)
plt.show()

结果:

image-20210903110307139 image-20210903110439966

也可以对时间进行指定

代码:

# 指定time = 0.09
fig = evks['aud/left'].plot_topomap(ch_type='mag', times=0.09, average=0.1)
fig.text(0.5, 0.05, 'average from 40-140 ms', ha='center')
plt.show()

结果

image-20210903110621124 image-20210903110809887

绘制箭头地图(Arrow maps)

上面的头皮地形图通过mne.viz.plot_arrowmap来生成显示估计磁场的大小和方向的箭头。

代码:

# 箭头地图
mags = evks['aud/left'].copy().pick_types(meg='mag')
mne.viz.plot_arrowmap(mags.data[:, 175], mags.info, extrapolate='local')
plt.show()

结果:

image-20210903111300340

绘制联合图(Joint plots)

联合图结合了butterfly plots和scalp topographies,并提供了evoked data的一种美观的展示方式。默认中地形图会被自动基于peak finding放置。联合图也可以选取特定时间来进行绘制。

代码:

# 联合图
evks['vis/right'].plot_joint()
plt.show()

结果

image-20210903112139270 image-20210903111831216

选取一段后:

image-20210903111927043
image-20210903111937418

选取一段后:

image-20210903112001570
image-20210903112016364

选取一段后:

image-20210903112048152

对比Evoked对象

可以采用mne.viz.plot_compare_evokeds来对比不同实验环境下的Evoked对象。它有可以用来选取channnel的pick参数,默认下为每一个channel类型生成一个图。

代码:

# 对比图
def custom_func(x):
    return x.max(axis=1)
for combine in ('mean', 'median', 'gfp', custom_func):
    mne.viz.plot_compare_evokeds(evks, picks='eeg', combine=combine)
plt.show()

结果:

image-20210903113132833 image-20210903113115518 image-20210903113145419 image-20210903113157884 image-20210903113215329

可以对图进行定制,这里我们对aud和vis情况下进行颜色的选择,对left和right情况进行线条的选择。

代码:

# 定制对比图
mne.viz.plot_compare_evokeds(evks, picks='MEG 1811', colors=dict(aud=0, vis=1),
                             linestyles=dict(left='solid', right='dashed'))
plt.show()

结果:

image-20210903114842012

如果传递的是一个Evoked对象的列表或元组,则legend键将被Evoked对象的comment属性自动生成。

代码:

# 传入元组或列表
temp_list = list()
for idx, _comment in enumerate(('foo', 'foo', '', None, 'bar'), start=1):
    _evk = evokeds_list[0].copy()
    _evk.comment = _comment
    _evk.data *= idx  # so we can tell the traces apart
    temp_list.append(_evk)
mne.viz.plot_compare_evokeds(temp_list, picks='mag')
plt.show()

结果:

image-20210903115749820 image-20210903115846190

图像映射(Image plots)

evoked_image()显示每个row的channel

代码:

# image plot
evks['vis/right'].plot_image(picks='meg')
plt.show()

结果:

image-20210903120230721

绘制次地形图(Topographical subplots)

对于sensor级的分析,在地形布局中绘制每个sensor的响应是有用的。 如果传递axes='topo'plot_compare_evakes函数可以进行这样的绘制,但如果传感器的数量太大,它可能会非常慢,所以这里我们只绘制脑电图通道:

代码:

# 次地形图
mne.viz.plot_compare_evokeds(evks, picks='eeg', colors=dict(aud=0, vis=1),
                             linestyles=dict(left='solid', right='dashed'),
                             axes='topo', styles=dict(aud=dict(linewidth=1),
                                                      vis=dict(linewidth=1)))
plt.show()

结果:

image-20210903121045335

对于大量的sensors,可以使用ecoked.plot_topo()mne.viz.plot_evoked_topo方法。

ecoked.plot_topo()仅绘制一个情况的。

mne.viz.plot_evoked_topo可以在相同坐标下绘制多个情况的,默认下绘制所有MEG sensors。

代码:

# 大量sensors
mne.viz.plot_evoked_topo(evokeds_list)
plt.show()

结果:

image-20210903121603257 image-20210903121623047

3D区域图(3D Field Maps)

为了能实现3D的效果,需要一个trans文件来对MEG设备和头表面(基于MRI)之间的坐标系进行位置转变。当然,也可以不用trans文件,但是这只能计算MEG头盔上的sensor。

代码:

# 读取trans文件
subjects_dir = os.path.join(sample_data_folder, 'subjects')
sample_data_trans_file = os.path.join(sample_data_folder, 'MEG', 'sample',
                                      'sample_audvis_raw-trans.fif')

默认下,MEG传感器(sensor)用于估计头盔表面的磁场,EEG传感器(sensor)用于估计头皮上的磁场。 一旦计算出映射,就可以使用invoke .plot_field()来绘制它们:

如果报错RuntimeError: Could not load any valid 3D backend: pyvista, mayavi, notebook,则安装这三个backend。

pip install pyvista
pip install notebook
// 还有mayavi的安装,这个比较复杂

关于mayavi的安装,请查看https://blog.csdn.net/qq_45347768/article/details/120082562

如果又报错:ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject,这是因为numpy版本问题,重装numpy即可

pip uninstall numpy
pip install numpy

之后要进行UI工具的安装,在mayavi的安装里面我也已经说明了,建议安装PyQt4。

最后是显示的问题,如果图片一闪而过,则需要在代码的最后加一个input()

代码:

# 绘制3D图
maps = mne.make_field_map(evks['aud/left'], trans=sample_data_trans_file,
                          subject='sample', subjects_dir=subjects_dir)
evks['aud/left'].plot_field(maps, time=0.1)
plt.show()
input()

结果:

image-20210903170410752 image-20210903170435457

同时也可以通过传入meg_surf='head'使用MEG sensors来估计头皮区域。

代码:

for ch_type in ('mag', 'grad', 'eeg'):
    evk = evks['aud/right'].copy().pick(ch_type)
    _map = mne.make_field_map(evk, trans=sample_data_trans_file,
                              subject='sample', subjects_dir=subjects_dir,
                              meg_surf='head')
    fig = evk.plot_field(_map, time=0.1)
    mne.viz.set_3d_title(fig, ch_type, size=20)
plt.show()
input()

结果:

image-20210903170751634 image-20210903170808066 image-20210903170817177

完整代码

import os
import numpy as np
import mne
from matplotlib import pyplot as plt

# 如果没有数据则用这个自动下载
# sample_data_folder = mne.datasets.sample.data_path()
# 已有数据,则直接加载即可
sample_data_folder = "D:\Data\MNE-sample-data"
sample_data_evk_file = os.path.join(sample_data_folder, 'MEG', 'sample',
                                    'sample_audvis-ave.fif')
evokeds_list = mne.read_evokeds(sample_data_evk_file, baseline=(None, 0),
                                proj=True, verbose=False)

# Show the condition names, and reassure ourselves that baseline correction has been applied.
for e in evokeds_list:
    print(f'Condition: {e.comment}, baseline: {e.baseline}')

# convert that list of Evoked objects into a dictionary
conds = ('aud/left', 'aud/right', 'vis/left', 'vis/right')
evks = dict(zip(conds, evokeds_list))
#      ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾ this is equivalent to:
# {'aud/left': evokeds_list[0], 'aud/right': evokeds_list[1],
#  'vis/left': evokeds_list[2], 'vis/right': evokeds_list[3]}

# signal trace
evks['aud/left'].plot(exclude=[])
plt.show()

# pick spatial_color gfp
evks['aud/left'].plot(picks='mag', spatial_colors=True, gfp=True)
plt.show()

# 头皮地形图
times = np.linspace(0.05, 0.13, 5)
evks['aud/left'].plot_topomap(ch_type='mag', times=times, colorbar=True)
plt.show()

# 指定time = 0.09
fig = evks['aud/left'].plot_topomap(ch_type='mag', times=0.09, average=0.1)
fig.text(0.5, 0.05, 'average from 40-140 ms', ha='center')
plt.show()

# 箭头地图
mags = evks['aud/left'].copy().pick_types(meg='mag')
mne.viz.plot_arrowmap(mags.data[:, 175], mags.info, extrapolate='local')
plt.show()

# 联合图
evks['vis/right'].plot_joint()
plt.show()

# 对比图
def custom_func(x):
    return x.max(axis=1)
for combine in ('mean', 'median', 'gfp', custom_func):
    mne.viz.plot_compare_evokeds(evks, picks='eeg', combine=combine)
plt.show()

# 定制对比图
mne.viz.plot_compare_evokeds(evks, picks='MEG 1811', colors=dict(aud=0, vis=1),
                             linestyles=dict(left='solid', right='dashed'))
plt.show()

# 传入元组或列表
temp_list = list()
for idx, _comment in enumerate(('foo', 'foo', '', None, 'bar'), start=1):
    _evk = evokeds_list[0].copy()
    _evk.comment = _comment
    _evk.data *= idx  # so we can tell the traces apart
    temp_list.append(_evk)
mne.viz.plot_compare_evokeds(temp_list, picks='mag')
plt.show()

# image plot
evks['vis/right'].plot_image(picks='meg')
plt.show()

# 次地形图
mne.viz.plot_compare_evokeds(evks, picks='eeg', colors=dict(aud=0, vis=1),
                             linestyles=dict(left='solid', right='dashed'),
                             axes='topo', styles=dict(aud=dict(linewidth=1),
                                                      vis=dict(linewidth=1)))
plt.show()

# 大量sensors
mne.viz.plot_evoked_topo(evokeds_list)
plt.show()

# 3D
# 读取trans文件
subjects_dir = os.path.join(sample_data_folder, 'subjects')
sample_data_trans_file = os.path.join(sample_data_folder, 'MEG', 'sample',
                                      'sample_audvis_raw-trans.fif')

# 绘制3D图
maps = mne.make_field_map(evks['aud/left'], trans=sample_data_trans_file,
                          subject='sample', subjects_dir=subjects_dir)
evks['aud/left'].plot_field(maps, time=0.1)
plt.show()
input()

for ch_type in ('mag', 'grad', 'eeg'):
    evk = evks['aud/right'].copy().pick(ch_type)
    _map = mne.make_field_map(evk, trans=sample_data_trans_file,
                              subject='sample', subjects_dir=subjects_dir,
                              meg_surf='head')
    fig = evk.plot_field(_map, time=0.1)
    mne.viz.set_3d_title(fig, ch_type, size=20)
plt.show()
input()
### MNE Python 中的特征可视化方法 MNE 是一种强大的工具库,用于处理和分析神经科学中的 EEG 和 MEG 数据。它提供了多种功能来实现数据的可视化,特别是对于 Evoked 对象和其他类型的特征数据。 以下是基于提供的引用内容以及 MNE 官方文档的功能说明[^1][^2]: #### 1. 使用 `evoked.plot()` 进行基础可视化 `mne.Evoked` 类的对象可以通过 `.plot()` 方法快速绘制平均响应曲线。这种方法适用于查看单通道或多通道的时间序列数据。 ```python import os.path as op import mne data_path = mne.datasets.sample.data_path() fname = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') evoked = mne.read_evokeds(fname, baseline=(None, 0), proj=True)[0] # 绘制时间序列图 evoked.plot(time_unit='s', titles=dict(eeg='Average Response')) ``` 上述代码会生成一个图形窗口,展示所有选定通道上的信号变化趋势。 --- #### 2. 使用拓扑图 (`topomap`) 展示空间分布 通过调用 `evoked.plot_topo()` 或者更详细的 `evoked.plot_topomap()`, 用户可以观察特定时刻的空间场强分布情况。 ```python times = np.linspace(0.05, 0.15, 5) # 自定义多个时间点 evoked.plot_topomap(times, ch_type='mag', size=1.5, cmap='RdBu_r') ``` 此部分利用了 Matplotlib 的颜色映射机制 (cmap),并支持自定义参数调整图像大小、样式等属性。 --- #### 3. 联合使用联合波形与拓扑图 为了更好地理解事件相关电位(ERP),可采用组合形式呈现——即在同一张图表上同时显示 ERP 曲线及其对应的头皮投影位置。 ```python evoked.plot_joint(title="Joint Plot Example", times=[0.08], topomap_args={'ch_type': 'eeg'}) ``` 这段脚本不仅展现了 ERPs 随时间的变化轨迹,还附加有指定瞬间下的全局活动模式[^3]。 --- #### 4. 基于频域的数据表示 如果研究兴趣集中在频率成分方面,则可通过 FFT 变换来获取频谱特性,并借助专门函数完成渲染工作。 ```python epochs = mne.make_fixed_length_epochs(raw, duration=1., preload=True) psds, freqs = mne.time_frequency.psd_welch(epochs) plt.figure(figsize=(7, 5)) for i_ch in range(len(psds)): plt.semilogy(freqs, psds[i_ch].T, color='gray', lw=0.5) plt.show() ``` 这里展示了如何计算功率谱密度 PSD 并将其绘制成半对数坐标系下的折线图。 --- ### 总结 以上介绍了几种常见的 MNE 特征可视化方式,涵盖了时程曲线、拓扑地图、联立视图及时频变换等多个维度。每种技术都有其适用场景,在实际应用过程中可以根据具体需求灵活选用合适的方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值