minitab学习系列(4)--纯误差、弯曲、失拟

系列文章目录


前言

一、如何将误差拆分为纯误差、弯曲和失拟

在 DOE 分析中,可以将残差误差的平方和(和自由度)最多分成三部分:纯误差、曲率和失拟。
残差误差的总自由度是总游程数减去估计的参数个数(包括常量、任何协变量、任何区组系数、任何中心点系数、主效应系数和任何交互作用系数)。残差误差的总平方和是设计内所有游程中的残差平方和。
纯误差
如果设计中有任何仿行(即,多个对于所有模型项具有完全相同水平的游程),则对于纯误差将存在自由度。每组仿行 ® 都将为纯误差贡献 r - 1 个自由度。换句话说,纯误差的自由度将等于:

m*(r - 1) + (c - 1)

其中:
m 是模型中的角点数
r 是仿行数
c 是中心点数
纯误差的平方和等于每组仿行的均值响应中响应的偏差平方和。

如果您有未复制的设计,则从模型中删除不重要的项时,可能会删除所有包含其中一个因子的项,这会导致复制的设计中的因子数减少一个。在这种情况下,您在未复制的设计中将获得一个误差项。

例如,如果您创建一个包含 3 个因子(A、B 和 C)的未复制设计,而且您从模型中删除 ABC、AC、BC 和 C 项,则简化的模型是包含 2 个因子(A 和 B)的复制设计。

弯曲
如果设计中有任何中心点,则可以选择在模型中包括中心点项作为参数,或者将弯曲作为误差的一个分量。在这两种情况下,存在 1 个与弯曲相关联的自由度。弯曲的平方和是在向模型中添加中心点项时所获得的残差误差平方和的减少量。

失拟
如果设计中有仿行,而且模型不饱和,则说明一些自由度是失拟的。失拟自由度等于残差误差自由度减去纯误差和弯曲(如果适用)自由度。失拟平方和等于残差误差平方和减去纯误差和弯曲(如果适用)平方和。失拟平方和表示从模型中省略的所有可估计的交互作用项的总效应。


总结

分享:
读书是文明生活中人所共认的一种乐趣,极为无福享受此种乐趣的人所羡慕。我们如把一生爱读书的人和一生不知读书的人比较一下,便能了解这一点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若竹之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值