小罗碎碎念
今天和大家分享一个国自然地区科学基金,执行年限为2020.01~2023.12,直接费用为34万元。
胃癌是我国常见恶性肿瘤,进展期患者术后复发转移率高,5 年生存率仅 50%。现有的基于 TNM 分期的预后评估无法满足个性化精准治疗需求。
本研究旨在融合影像组学、病理组学及临床信息构建预测模型,提高进展期胃癌术后生存期预测准确性,为个性化精准治疗提供依据。
采用回顾性与前瞻性结合的实验设计,收集进展期胃癌患者术前 CT 图像和术后病理玻片数字扫描图像。运用影像组学和病理组学大数据分析技术,结合临床预后信息,融合多尺度数据构建模型。研究过程严格按计划执行,涵盖数据收集整理、模型构建优化、对比分析等多个阶段,并与多单位合作交流。
成功构建了胃癌肿瘤区域自动分割、术前分级、病理图像识别分类、总生存期预测以及融合影像组学和病理组学预测术后生存风险等多个模型。发表 SCI 论文 5 篇、病例报道 1 篇,申请发明专利 1 项,培养 1 名博士和 1 名硕士。
这些成果有助于提高胃癌预后评估准确性,在胃癌预后评估、器官及病灶分割、病理图像人工智能识别等领域具有广阔应用前景 。
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!
一、项目简介
胃癌是我国第二大恶性肿瘤,多数患者就诊时已处于进展期。
基于TNM分期的综合治疗是进展期胃癌的标准疗法,但个体和肿瘤差异导致相同分期患者治疗反应和预后不同,精准评估术后预后对个性化治疗意义重大。
前期研究显示CT影像组学可预测胃癌患者术后总生存期,预实验表明人工智能能自动分割肿瘤病理组织。 因此提出融合影像组学、病理组学和临床信息建模,或可为胃癌术后生存期预测提供新线索的假说。
本项目基于进展期胃癌术前CT影像和术后数字病理切片,运用相关分析方法筛选特征、构建标签并综合建模,再利用癌症基因组图谱和前瞻性数据验证优化,旨在解析肿瘤生物学特性,准确预测进展期胃癌术后预后,指导个性化精准治疗 。
二、基于增强CT影像组学构建进展期胃腺癌术前分级模型
准确的胃癌术前分级分期对治疗计划制定和预后预测十分关键。
依据相关肿瘤分类与分期标准,胃腺癌组织学分化程度和预后相关,分化程度越低恶性程度越高,高级别患者更易转移复发且预后差。
精准预测胃腺癌组织学分化程度和级别,对个性化精准治疗和预后预测有重要临床意义,能提高低级别患者疗效、改善预后,还能避免高级别患者过度治疗。
基于进展期胃腺癌患者术前腹部增强CT静脉期图像,结合临床信息,运用影像组学方法构建术前分级预测模型。
- 肿瘤分割:在患者术前腹部增强CT静脉期图像上,将肿瘤区域标记出来,区分于周围正常组织。
- 特征提取:从分割出的肿瘤图像中获取大量数据特征,包括形状、纹理等信息,如图片中的数字矩阵和统计分布图形,代表提取的不同维度特征。
- 特征筛选:从众多提取的特征中挑选出最具区分性和代表性的关键特征,去除冗余信息,图中的图表展示了筛选过程和筛选后的特征分布。
- 结果分析:对筛选后的特征数据进行分析处理,构建模型并评估其性能,图中的曲线可能表示模型的预测准确性等指标。
- 临床应用:将构建好且验证有效的模型应用到临床实践中,用于预测胃腺癌患者的术前分级,帮助医生制定治疗方案和判断预后,图中的生存曲线可辅助评估不同风险患者的生存情况。
三、融合病理组学和影像组学预测进展期胃腺癌术后生存风险
在胃癌治疗决策中,准确的预后评估及风险分层对患者个性化精准治疗意义重大,既能提高高风险患者疗效、改善预后,又能避免低风险患者过度治疗、降低风险。
基于术前无创检查和术后病理诊断,研究新的预后预测方法、完善预后分层系统、提供精准治疗量化依据,进而改善进展期胃癌生存预后,是当前胃癌治疗领域亟待解决的重大课题。
本研究联合影像组学和病理组学,从多尺度解析肿瘤生物学特性,构建进展期胃腺癌术后生存风险预测模型(图9),以提高胃癌生存预测效能,指导个性化精准诊疗。
- 数据采集:收集CT影像和病理图像两类数据。CT影像用于后续的影像组学分析,病理图像则用于病理组学分析。
- 模型构建:
- 影像组学模型:对CT影像进行ROI(感兴趣区域)分割,提取形状、一阶特征、纹理等特征,筛选特征后构建影像组学模型。
- 病理组学模型:对病理图像进行处理与特征提取,然后筛选特征,构建病理组学模型。
- 评估与验证:将影像组学和病理组学模型结果融合,通过融合列线图、ROC曲线和决策曲线等方法对构建的模型进行评估与验证,判断模型预测进展期胃腺癌术后生存风险的效能 。
结束语
本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!